Let’s jump into Rust by working through a hands-on project together! This chapter introduces you to a few common Rust concepts by showing you how to use them in a real program. You’ll learn about let
, match
, methods, associated functions, using external crates, and more! The following chapters will explore these ideas in more detail. In this chapter, you’ll practice the fundamentals.
We’ll implement a classic beginner programming problem: a guessing game. Here’s how it works: the program will generate a random integer between 1 and 100. It will then prompt the player to enter a guess. After a guess is entered, the program will indicate whether the guess is too low or too high. If the guess is correct, the game will print a congratulatory message and exit.
To set up a new project, go to the projects directory that you created in Chapter 1 and make a new project using Cargo, like so:
$ cargo new guessing_game $ cd guessing_game
The first command, cargo new
, takes the name of the project (guessing_game
) as the first argument. The second command changes to the new project’s directory.
Look at the generated Cargo.toml file:
Filename: Cargo.toml
[package] name = "guessing_game" version = "0.1.0" authors = ["Your Name <[email protected]>"] edition = "2018" # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html [dependencies]
If the author information that Cargo obtained from your environment is not correct, fix that in the file and save it again.
As you saw in Chapter 1, cargo new
generates a “Hello, world!” program for you. Check out the src/main.rs file:
Filename: src/main.rs
fn main() { println!("Hello, world!"); }
Now let’s compile this “Hello, world!” program and run it in the same step using the cargo run
command:
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 1.50s Running `target/debug/guessing_game` Hello, world!
The run
command comes in handy when you need to rapidly iterate on a project, as we’ll do in this game, quickly testing each iteration before moving on to the next one.
Reopen the src/main.rs file. You’ll be writing all the code in this file.
The first part of the guessing game program will ask for user input, process that input, and check that the input is in the expected form. To start, we’ll allow the player to input a guess. Enter the code in Listing 2-1 into src/main.rs.
Filename: src/main.rs
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
This code contains a lot of information, so let’s go over it line by line. To obtain user input and then print the result as output, we need to bring the io
(input/output) library into scope. The io
library comes from the standard library (which is known as std
):
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
By default, Rust brings only a few types into the scope of every program in the prelude. If a type you want to use isn’t in the prelude, you have to bring that type into scope explicitly with a use
statement. Using the std::io
library provides you with a number of useful features, including the ability to accept user input.
As you saw in Chapter 1, the main
function is the entry point into the program:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
The fn
syntax declares a new function, the parentheses, ()
, indicate there are no parameters, and the curly bracket, {
, starts the body of the function.
As you also learned in Chapter 1, println!
is a macro that prints a string to the screen:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
This code is printing a prompt stating what the game is and requesting input from the user.
Next, we’ll create a place to store the user input, like this:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
Now the program is getting interesting! There’s a lot going on in this little line. Notice that this is a let
statement, which is used to create a variable. Here’s another example:
let foo = bar;
This line creates a new variable named foo
and binds it to the value of the bar
variable. In Rust, variables are immutable by default. We’ll be discussing this concept in detail in the “Variables and Mutability” section in Chapter 3. The following example shows how to use mut
before the variable name to make a variable mutable:
let foo = 5; // immutable let mut bar = 5; // mutable
Note: The
//
syntax starts a comment that continues until the end of the line. Rust ignores everything in comments, which are discussed in more detail in Chapter 3.
Let’s return to the guessing game program. You now know that let mut guess
will introduce a mutable variable named guess
. On the other side of the equal sign (=
) is the value that guess
is bound to, which is the result of calling String::new
, a function that returns a new instance of a String
. String
is a string type provided by the standard library that is a growable, UTF-8 encoded bit of text.
The ::
syntax in the ::new
line indicates that new
is an associated function of the String
type. An associated function is implemented on a type, in this case String
, rather than on a particular instance of a String
. Some languages call this a static method.
This new
function creates a new, empty string. You’ll find a new
function on many types, because it’s a common name for a function that makes a new value of some kind.
To summarize, the let mut guess = String::new();
line has created a mutable variable that is currently bound to a new, empty instance of a String
. Whew!
Recall that we included the input/output functionality from the standard library with use std::io;
on the first line of the program. Now we’ll call the stdin
function from the io
module:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
If we hadn’t put the use std::io
line at the beginning of the program, we could have written this function call as std::io::stdin
. The stdin
function returns an instance of std::io::Stdin
, which is a type that represents a handle to the standard input for your terminal.
The next part of the code, .read_line(&mut guess)
, calls the read_line
method on the standard input handle to get input from the user. We’re also passing one argument to read_line
: &mut guess
.
The job of read_line
is to take whatever the user types into standard input and place that into a string, so it takes that string as an argument. The string argument needs to be mutable so the method can change the string’s content by adding the user input.
The &
indicates that this argument is a reference, which gives you a way to let multiple parts of your code access one piece of data without needing to copy that data into memory multiple times. References are a complex feature, and one of Rust’s major advantages is how safe and easy it is to use references. You don’t need to know a lot of those details to finish this program. For now, all you need to know is that like variables, references are immutable by default. Hence, you need to write &mut guess
rather than &guess
to make it mutable. (Chapter 4 will explain references more thoroughly.)
Result
TypeWe’re still working on this line of code. Although we’re now discussing a third line of text, it’s still part of a single logical line of code. The next part is this method:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
When you call a method with the .foo()
syntax, it’s often wise to introduce a newline and other whitespace to help break up long lines. We could have written this code as:
io::stdin().read_line(&mut guess).expect("Failed to read line");
However, one long line is difficult to read, so it’s best to divide it. Now let’s discuss what this line does.
As mentioned earlier, read_line
puts what the user types into the string we’re passing it, but it also returns a value—in this case, an io::Result
. Rust has a number of types named Result
in its standard library: a generic Result
as well as specific versions for submodules, such as io::Result
.
The Result
types are enumerations, often referred to as enums. An enumeration is a type that can have a fixed set of values, and those values are called the enum’s variants. Chapter 6 will cover enums in more detail.
For Result
, the variants are Ok
or Err
. The Ok
variant indicates the operation was successful, and inside Ok
is the successfully generated value. The Err
variant means the operation failed, and Err
contains information about how or why the operation failed.
The purpose of these Result
types is to encode error-handling information. Values of the Result
type, like values of any type, have methods defined on them. An instance of io::Result
has an expect
method that you can call. If this instance of io::Result
is an Err
value, expect
will cause the program to crash and display the message that you passed as an argument to expect
. If the read_line
method returns an Err
, it would likely be the result of an error coming from the underlying operating system. If this instance of io::Result
is an Ok
value, expect
will take the return value that Ok
is holding and return just that value to you so you can use it. In this case, that value is the number of bytes in what the user entered into standard input.
If you don’t call expect
, the program will compile, but you’ll get a warning:
$ cargo build Compiling guessing_game v0.1.0 (file:///projects/guessing_game) warning: unused `std::result::Result` that must be used --> src/main.rs:10:5 | 10 | io::stdin().read_line(&mut guess); | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | = note: `#[warn(unused_must_use)]` on by default = note: this `Result` may be an `Err` variant, which should be handled Finished dev [unoptimized + debuginfo] target(s) in 0.59s
Rust warns that you haven’t used the Result
value returned from read_line
, indicating that the program hasn’t handled a possible error.
The right way to suppress the warning is to actually write error handling, but because you just want to crash this program when a problem occurs, you can use expect
. You’ll learn about recovering from errors in Chapter 9.
println!
PlaceholdersAside from the closing curly bracket, there’s only one more line to discuss in the code added so far, which is the following:
use std::io; fn main() { println!("Guess the number!"); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
This line prints the string we saved the user’s input in. The set of curly brackets, {}
, is a placeholder: think of {}
as little crab pincers that hold a value in place. You can print more than one value using curly brackets: the first set of curly brackets holds the first value listed after the format string, the second set holds the second value, and so on. Printing multiple values in one call to println!
would look like this:
#![allow(unused)] fn main() { let x = 5; let y = 10; println!("x = {} and y = {}", x, y); }
This code would print x = 5 and y = 10
.
Let’s test the first part of the guessing game. Run it using cargo run
:
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 6.44s Running `target/debug/guessing_game` Guess the number! Please input your guess. 6 You guessed: 6
At this point, the first part of the game is done: we’re getting input from the keyboard and then printing it.
Next, we need to generate a secret number that the user will try to guess. The secret number should be different every time so the game is fun to play more than once. Let’s use a random number between 1 and 100 so the game isn’t too difficult. Rust doesn’t yet include random number functionality in its standard library. However, the Rust team does provide a rand
crate.
Remember that a crate is a collection of Rust source code files. The project we’ve been building is a binary crate, which is an executable. The rand
crate is a library crate, which contains code intended to be used in other programs.
Cargo’s use of external crates is where it really shines. Before we can write code that uses rand
, we need to modify the Cargo.toml file to include the rand
crate as a dependency. Open that file now and add the following line to the bottom beneath the [dependencies]
section header that Cargo created for you:
Filename: Cargo.toml
[dependencies] rand = "0.5.5"
In the Cargo.toml file, everything that follows a header is part of a section that continues until another section starts. The [dependencies]
section is where you tell Cargo which external crates your project depends on and which versions of those crates you require. In this case, we’ll specify the rand
crate with the semantic version specifier 0.5.5
. Cargo understands Semantic Versioning (sometimes called SemVer), which is a standard for writing version numbers. The number 0.5.5
is actually shorthand for ^0.5.5
, which means “any version that has a public API compatible with version 0.5.5.”
Now, without changing any of the code, let’s build the project, as shown in Listing 2-2.
$ cargo build Updating crates.io index Downloaded rand v0.5.5 Downloaded libc v0.2.62 Downloaded rand_core v0.2.2 Downloaded rand_core v0.3.1 Downloaded rand_core v0.4.2 Compiling rand_core v0.4.2 Compiling libc v0.2.62 Compiling rand_core v0.3.1 Compiling rand_core v0.2.2 Compiling rand v0.5.5 Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 2.53s
You may see different version numbers (but they will all be compatible with the code, thanks to SemVer!), different lines (depending on the operating system), and the lines may be in a different order.
Now that we have an external dependency, Cargo fetches the latest versions of everything from the registry, which is a copy of data from Crates.io. Crates.io is where people in the Rust ecosystem post their open source Rust projects for others to use.
After updating the registry, Cargo checks the [dependencies]
section and downloads any crates you don’t have yet. In this case, although we only listed rand
as a dependency, Cargo also grabbed libc
and rand_core
, because rand
depends on those to work. After downloading the crates, Rust compiles them and then compiles the project with the dependencies available.
If you immediately run cargo build
again without making any changes, you won’t get any output aside from the Finished
line. Cargo knows it has already downloaded and compiled the dependencies, and you haven’t changed anything about them in your Cargo.toml file. Cargo also knows that you haven’t changed anything about your code, so it doesn’t recompile that either. With nothing to do, it simply exits.
If you open up the src/main.rs file, make a trivial change, and then save it and build again, you’ll only see two lines of output:
$ cargo build Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 2.53 secs
These lines show Cargo only updates the build with your tiny change to the src/main.rs file. Your dependencies haven’t changed, so Cargo knows it can reuse what it has already downloaded and compiled for those. It just rebuilds your part of the code.
Cargo has a mechanism that ensures you can rebuild the same artifact every time you or anyone else builds your code: Cargo will use only the versions of the dependencies you specified until you indicate otherwise. For example, what happens if next week version 0.5.6 of the rand
crate comes out and contains an important bug fix but also contains a regression that will break your code?
The answer to this problem is the Cargo.lock file, which was created the first time you ran cargo build
and is now in your guessing_game directory. When you build a project for the first time, Cargo figures out all the versions of the dependencies that fit the criteria and then writes them to the Cargo.lock file. When you build your project in the future, Cargo will see that the Cargo.lock file exists and use the versions specified there rather than doing all the work of figuring out versions again. This lets you have a reproducible build automatically. In other words, your project will remain at 0.5.5
until you explicitly upgrade, thanks to the Cargo.lock file.
When you do want to update a crate, Cargo provides another command, update
, which will ignore the Cargo.lock file and figure out all the latest versions that fit your specifications in Cargo.toml. If that works, Cargo will write those versions to the Cargo.lock file.
But by default, Cargo will only look for versions greater than 0.5.5
and less than 0.6.0
. If the rand
crate has released two new versions, 0.5.6
and 0.6.0
, you would see the following if you ran cargo update
:
$ cargo update Updating crates.io index Updating rand v0.5.5 -> v0.5.6
At this point, you would also notice a change in your Cargo.lock file noting that the version of the rand
crate you are now using is 0.5.6
.
If you wanted to use rand
version 0.6.0
or any version in the 0.6.x
series, you’d have to update the Cargo.toml file to look like this instead:
[dependencies] rand = "0.6.0"
The next time you run cargo build
, Cargo will update the registry of crates available and reevaluate your rand
requirements according to the new version you have specified.
There’s a lot more to say about Cargo and its ecosystem which we’ll discuss in Chapter 14, but for now, that’s all you need to know. Cargo makes it very easy to reuse libraries, so Rustaceans are able to write smaller projects that are assembled from a number of packages.
Now that you’ve added the rand
crate to Cargo.toml, let’s start using rand
. The next step is to update src/main.rs, as shown in Listing 2-3.
Filename: src/main.rs
use std::io; use rand::Rng; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); println!("The secret number is: {}", secret_number); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); }
First, we add a use
line: use rand::Rng
. The Rng
trait defines methods that random number generators implement, and this trait must be in scope for us to use those methods. Chapter 10 will cover traits in detail.
Next, we’re adding two lines in the middle. The rand::thread_rng
function will give us the particular random number generator that we’re going to use: one that is local to the current thread of execution and seeded by the operating system. Then we call the gen_range
method on the random number generator. This method is defined by the Rng
trait that we brought into scope with the use rand::Rng
statement. The gen_range
method takes two numbers as arguments and generates a random number between them. It’s inclusive on the lower bound but exclusive on the upper bound, so we need to specify 1
and 101
to request a number between 1 and 100.
Note: You won’t just know which traits to use and which methods and functions to call from a crate. Instructions for using a crate are in each crate’s documentation. Another neat feature of Cargo is that you can run the
cargo doc --open
command, which will build documentation provided by all of your dependencies locally and open it in your browser. If you’re interested in other functionality in therand
crate, for example, runcargo doc --open
and clickrand
in the sidebar on the left.
The second line that we added to the middle of the code prints the secret number. This is useful while we’re developing the program to be able to test it, but we’ll delete it from the final version. It’s not much of a game if the program prints the answer as soon as it starts!
Try running the program a few times:
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 2.53s Running `target/debug/guessing_game` Guess the number! The secret number is: 7 Please input your guess. 4 You guessed: 4 $ cargo run Finished dev [unoptimized + debuginfo] target(s) in 0.02s Running `target/debug/guessing_game` Guess the number! The secret number is: 83 Please input your guess. 5 You guessed: 5
You should get different random numbers, and they should all be numbers between 1 and 100. Great job!
Now that we have user input and a random number, we can compare them. That step is shown in Listing 2-4. Note that this code won’t compile quite yet, as we will explain.
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { // --snip-- println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); println!("The secret number is: {}", secret_number); println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); println!("You guessed: {}", guess); match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => println!("You win!"), } }
The first new bit here is another use
statement, bringing a type called std::cmp::Ordering
into scope from the standard library. Like Result
, Ordering
is another enum, but the variants for Ordering
are Less
, Greater
, and Equal
. These are the three outcomes that are possible when you compare two values.
Then we add five new lines at the bottom that use the Ordering
type. The cmp
method compares two values and can be called on anything that can be compared. It takes a reference to whatever you want to compare with: here it’s comparing the guess
to the secret_number
. Then it returns a variant of the Ordering
enum we brought into scope with the use
statement. We use a match
expression to decide what to do next based on which variant of Ordering
was returned from the call to cmp
with the values in guess
and secret_number
.
A match
expression is made up of arms. An arm consists of a pattern and the code that should be run if the value given to the beginning of the match
expression fits that arm’s pattern. Rust takes the value given to match
and looks through each arm’s pattern in turn. The match
construct and patterns are powerful features in Rust that let you express a variety of situations your code might encounter and make sure that you handle them all. These features will be covered in detail in Chapter 6 and Chapter 18, respectively.
Let’s walk through an example of what would happen with the match
expression used here. Say that the user has guessed 50 and the randomly generated secret number this time is 38. When the code compares 50 to 38, the cmp
method will return Ordering::Greater
, because 50 is greater than 38. The match
expression gets the Ordering::Greater
value and starts checking each arm’s pattern. It looks at the first arm’s pattern, Ordering::Less
, and sees that the value Ordering::Greater
does not match Ordering::Less
, so it ignores the code in that arm and moves to the next arm. The next arm’s pattern, Ordering::Greater
, does match Ordering::Greater
! The associated code in that arm will execute and print Too big!
to the screen. The match
expression ends because it has no need to look at the last arm in this scenario.
However, the code in Listing 2-4 won’t compile yet. Let’s try it:
$ cargo build Compiling libc v0.2.51 Compiling rand_core v0.4.0 Compiling rand_core v0.3.1 Compiling rand v0.5.6 Compiling guessing_game v0.1.0 (file:///projects/guessing_game) error[E0308]: mismatched types --> src/main.rs:22:21 | 22 | match guess.cmp(&secret_number) { | ^^^^^^^^^^^^^^ expected struct `std::string::String`, found integer | = note: expected reference `&std::string::String` found reference `&{integer}` error: aborting due to previous error For more information about this error, try `rustc --explain E0308`. error: could not compile `guessing_game`. To learn more, run the command again with --verbose.
The core of the error states that there are mismatched types. Rust has a strong, static type system. However, it also has type inference. When we wrote let mut guess = String::new()
, Rust was able to infer that guess
should be a String
and didn’t make us write the type. The secret_number
, on the other hand, is a number type. A few number types can have a value between 1 and 100: i32
, a 32-bit number; u32
, an unsigned 32-bit number; i64
, a 64-bit number; as well as others. Rust defaults to an i32
, which is the type of secret_number
unless you add type information elsewhere that would cause Rust to infer a different numerical type. The reason for the error is that Rust cannot compare a string and a number type.
Ultimately, we want to convert the String
the program reads as input into a real number type so we can compare it numerically to the secret number. We can do that by adding another line to the main
function body:
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); println!("The secret number is: {}", secret_number); println!("Please input your guess."); // --snip-- let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); let guess: u32 = guess.trim().parse().expect("Please type a number!"); println!("You guessed: {}", guess); match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => println!("You win!"), } }
The line is:
let guess: u32 = guess.trim().parse().expect("Please type a number!");
We create a variable named guess
. But wait, doesn’t the program already have a variable named guess
? It does, but Rust allows us to shadow the previous value of guess
with a new one. This feature is often used in situations in which you want to convert a value from one type to another type. Shadowing lets us reuse the guess
variable name rather than forcing us to create two unique variables, such as guess_str
and guess
for example. (Chapter 3 covers shadowing in more detail.)
We bind guess
to the expression guess.trim().parse()
. The guess
in the expression refers to the original guess
that was a String
with the input in it. The trim
method on a String
instance will eliminate any whitespace at the beginning and end. Although u32
can contain only numerical characters, the user must press enter to satisfy read_line
. When the user presses enter, a newline character is added to the string. For example, if the user types 5 and presses enter, guess
looks like this: 5\n
. The \n
represents “newline,” the result of pressing enter. The trim
method eliminates \n
, resulting in just 5
.
The parse
method on strings parses a string into some kind of number. Because this method can parse a variety of number types, we need to tell Rust the exact number type we want by using let guess: u32
. The colon (:
) after guess
tells Rust we’ll annotate the variable’s type. Rust has a few built-in number types; the u32
seen here is an unsigned, 32-bit integer. It’s a good default choice for a small positive number. You’ll learn about other number types in Chapter 3. Additionally, the u32
annotation in this example program and the comparison with secret_number
means that Rust will infer that secret_number
should be a u32
as well. So now the comparison will be between two values of the same type!
The call to parse
could easily cause an error. If, for example, the string contained A👍%
, there would be no way to convert that to a number. Because it might fail, the parse
method returns a Result
type, much as the read_line
method does (discussed earlier in “Handling Potential Failure with the Result
Type”). We’ll treat this Result
the same way by using the expect
method again. If parse
returns an Err
Result
variant because it couldn’t create a number from the string, the expect
call will crash the game and print the message we give it. If parse
can successfully convert the string to a number, it will return the Ok
variant of Result
, and expect
will return the number that we want from the Ok
value.
Let’s run the program now!
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 0.43s Running `target/debug/guessing_game` Guess the number! The secret number is: 58 Please input your guess. 76 You guessed: 76 Too big!
Nice! Even though spaces were added before the guess, the program still figured out that the user guessed 76. Run the program a few times to verify the different behavior with different kinds of input: guess the number correctly, guess a number that is too high, and guess a number that is too low.
We have most of the game working now, but the user can make only one guess. Let’s change that by adding a loop!
The loop
keyword creates an infinite loop. We’ll add that now to give users more chances at guessing the number:
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); // --snip-- println!("The secret number is: {}", secret_number); loop { println!("Please input your guess."); // --snip-- let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); let guess: u32 = guess.trim().parse().expect("Please type a number!"); println!("You guessed: {}", guess); match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => println!("You win!"), } } }
As you can see, we’ve moved everything into a loop from the guess input prompt onward. Be sure to indent the lines inside the loop another four spaces each and run the program again. Notice that there is a new problem because the program is doing exactly what we told it to do: ask for another guess forever! It doesn’t seem like the user can quit!
The user could always interrupt the program by using the keyboard shortcut ctrl-c. But there’s another way to escape this insatiable monster, as mentioned in the parse
discussion in “Comparing the Guess to the Secret Number”: if the user enters a non-number answer, the program will crash. The user can take advantage of that in order to quit, as shown here:
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Finished dev [unoptimized + debuginfo] target(s) in 1.50s Running `target/debug/guessing_game` Guess the number! The secret number is: 59 Please input your guess. 45 You guessed: 45 Too small! Please input your guess. 60 You guessed: 60 Too big! Please input your guess. 59 You guessed: 59 You win! Please input your guess. quit thread 'main' panicked at 'Please type a number!: ParseIntError { kind: InvalidDigit }', src/libcore/result.rs:999:5 note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace.
Typing quit
actually quits the game, but so will any other non-number input. However, this is suboptimal to say the least. We want the game to automatically stop when the correct number is guessed.
Let’s program the game to quit when the user wins by adding a break
statement:
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); println!("The secret number is: {}", secret_number); loop { println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); let guess: u32 = guess.trim().parse().expect("Please type a number!"); println!("You guessed: {}", guess); // --snip-- match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => { println!("You win!"); break; } } } }
Adding the break
line after You win!
makes the program exit the loop when the user guesses the secret number correctly. Exiting the loop also means exiting the program, because the loop is the last part of main
.
To further refine the game’s behavior, rather than crashing the program when the user inputs a non-number, let’s make the game ignore a non-number so the user can continue guessing. We can do that by altering the line where guess
is converted from a String
to a u32
, as shown in Listing 2-5.
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); println!("The secret number is: {}", secret_number); loop { println!("Please input your guess."); let mut guess = String::new(); // --snip-- io::stdin() .read_line(&mut guess) .expect("Failed to read line"); let guess: u32 = match guess.trim().parse() { Ok(num) => num, Err(_) => continue, }; println!("You guessed: {}", guess); // --snip-- match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => { println!("You win!"); break; } } } }
Switching from an expect
call to a match
expression is how you generally move from crashing on an error to handling the error. Remember that parse
returns a Result
type and Result
is an enum that has the variants Ok
or Err
. We’re using a match
expression here, as we did with the Ordering
result of the cmp
method.
If parse
is able to successfully turn the string into a number, it will return an Ok
value that contains the resulting number. That Ok
value will match the first arm’s pattern, and the match
expression will just return the num
value that parse
produced and put inside the Ok
value. That number will end up right where we want it in the new guess
variable we’re creating.
If parse
is not able to turn the string into a number, it will return an Err
value that contains more information about the error. The Err
value does not match the Ok(num)
pattern in the first match
arm, but it does match the Err(_)
pattern in the second arm. The underscore, _
, is a catchall value; in this example, we’re saying we want to match all Err
values, no matter what information they have inside them. So the program will execute the second arm’s code, continue
, which tells the program to go to the next iteration of the loop
and ask for another guess. So, effectively, the program ignores all errors that parse
might encounter!
Now everything in the program should work as expected. Let’s try it:
$ cargo run Compiling guessing_game v0.1.0 (file:///projects/guessing_game) Running `target/debug/guessing_game` Guess the number! The secret number is: 61 Please input your guess. 10 You guessed: 10 Too small! Please input your guess. 99 You guessed: 99 Too big! Please input your guess. foo Please input your guess. 61 You guessed: 61 You win!
Awesome! With one tiny final tweak, we will finish the guessing game. Recall that the program is still printing the secret number. That worked well for testing, but it ruins the game. Let’s delete the println!
that outputs the secret number. Listing 2-6 shows the final code.
Filename: src/main.rs
use rand::Rng; use std::cmp::Ordering; use std::io; fn main() { println!("Guess the number!"); let secret_number = rand::thread_rng().gen_range(1, 101); loop { println!("Please input your guess."); let mut guess = String::new(); io::stdin() .read_line(&mut guess) .expect("Failed to read line"); let guess: u32 = match guess.trim().parse() { Ok(num) => num, Err(_) => continue, }; println!("You guessed: {}", guess); match guess.cmp(&secret_number) { Ordering::Less => println!("Too small!"), Ordering::Greater => println!("Too big!"), Ordering::Equal => { println!("You win!"); break; } } } }
At this point, you’ve successfully built the guessing game. Congratulations!
This project was a hands-on way to introduce you to many new Rust concepts: let
, match
, methods, associated functions, the use of external crates, and more. In the next few chapters, you’ll learn about these concepts in more detail. Chapter 3 covers concepts that most programming languages have, such as variables, data types, and functions, and shows how to use them in Rust. Chapter 4 explores ownership, a feature that makes Rust different from other languages. Chapter 5 discusses structs and method syntax, and Chapter 6 explains how enums work.
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html