Most front-end applications need to communicate with a server over the HTTP protocol, to download or upload data and access other back-end services. Angular provides a client HTTP API for Angular applications, the HttpClient
service class in @angular/common/http
.
The HTTP client service offers the following major features.
Before working with the HttpClientModule
, you should have a basic understanding of the following:
Before you can use HttpClient
, you need to import the Angular HttpClientModule
. Most apps do so in the root AppModule
.
import { NgModule } from '@angular/core'; import { BrowserModule } from '@angular/platform-browser'; import { HttpClientModule } from '@angular/common/http'; @NgModule({ imports: [ BrowserModule, // import HttpClientModule after BrowserModule. HttpClientModule, ], declarations: [ AppComponent, ], bootstrap: [ AppComponent ] }) export class AppModule {}
You can then inject the HttpClient
service as a dependency of an application class, as shown in the following ConfigService
example.
import { Injectable } from '@angular/core'; import { HttpClient } from '@angular/common/http'; @Injectable() export class ConfigService { constructor(private http: HttpClient) { } }
The HttpClient
service makes use of observables for all transactions. You must import the RxJS observable and operator symbols that appear in the example snippets. These ConfigService
imports are typical.
import { Observable, throwError } from 'rxjs'; import { catchError, retry } from 'rxjs/operators';
You can run the live example that accompanies this guide.
The sample app does not require a data server. It relies on the Angular in-memory-web-api, which replaces the HttpClient module's
HttpBackend
. The replacement service simulates the behavior of a REST-like backend.Look at the
AppModule
imports to see how it is configured.
Use the HttpClient.get()
method to fetch data from a server. The asynchronous method sends an HTTP request, and returns an Observable that emits the requested data when the response is received. The return type varies based on the observe
and responseType
values that you pass to the call.
The get()
method takes two arguments; the endpoint URL from which to fetch, and an options object that is used to configure the request.
options: { headers?: HttpHeaders | {[header: string]: string | string[]}, observe?: 'body' | 'events' | 'response', params?: HttpParams|{[param: string]: string | number | boolean | ReadonlyArray<string | number | boolean>}, reportProgress?: boolean, responseType?: 'arraybuffer'|'blob'|'json'|'text', withCredentials?: boolean, }
Important options include the observe and responseType properties.
Use the
options
object to configure various other aspects of an outgoing request. In Adding headers, for example, the service set the default headers using theheaders
option property.Use the
params
property to configure a request with HTTP URL parameters, and thereportProgress
option to listen for progress events when transferring large amounts of data.
Applications often request JSON data from a server. In the ConfigService
example, the app needs a configuration file on the server, config.json
, that specifies resource URLs.
{ "heroesUrl": "api/heroes", "textfile": "assets/textfile.txt", "date": "2020-01-29" }
To fetch this kind of data, the get()
call needs the following options: {observe: 'body', responseType: 'json'}
. These are the default values for those options, so the following examples do not pass the options object. Later sections show some of the additional option possibilities.
The example conforms to the best practices for creating scalable solutions by defining a re-usable injectable service to perform the data-handling functionality. In addition to fetching data, the service can post-process the data, add error handling, and add retry logic.
The ConfigService
fetches this file using the HttpClient.get()
method.
configUrl = 'assets/config.json'; getConfig() { return this.http.get<Config>(this.configUrl); }
The ConfigComponent
injects the ConfigService
and calls the getConfig
service method.
Because the service method returns an Observable
of configuration data, the component subscribes to the method's return value. The subscription callback performs minimal post-processing. It copies the data fields into the component's config
object, which is data-bound in the component template for display.
showConfig() { this.configService.getConfig() .subscribe((data: Config) => this.config = { heroesUrl: data.heroesUrl, textfile: data.textfile, date: data.date, }); }
For all HttpClient
methods, the method doesn't begin its HTTP request until you call subscribe()
on the observable the method returns.
This is true for all HttpClient
methods.
You should always unsubscribe from an observable when a component is destroyed.
All observables returned from HttpClient
methods are cold by design. Execution of the HTTP request is deferred, letting you extend the observable with additional operations such as tap
and catchError
before anything actually happens.
Calling subscribe()
triggers execution of the observable and causes HttpClient
to compose and send the HTTP request to the server.
Think of these observables as blueprints for actual HTTP requests.
In fact, each
subscribe()
initiates a separate, independent execution of the observable. Subscribing twice results in two HTTP requests.const req = http.get<Heroes>('/api/heroes'); // 0 requests made - .subscribe() not called. req.subscribe(); // 1 request made. req.subscribe(); // 2 requests made.
Structure your HttpClient
request to declare the type of the response object, to make consuming the output easier and more obvious. Specifying the response type acts as a type assertion at compile time.
Specifying the response type is a declaration to TypeScript that it should treat your response as being of the given type. This is a build-time check and doesn't guarantee that the server actually responds with an object of this type. It is up to the server to ensure that the type specified by the server API is returned.
To specify the response object type, first define an interface with the required properties. Use an interface rather than a class, because the response is a plain object that cannot be automatically converted to an instance of a class.
export interface Config { heroesUrl: string; textfile: string; date: any; }
Next, specify that interface as the HttpClient.get()
call's type parameter in the service.
getConfig() { // now returns an Observable of Config return this.http.get<Config>(this.configUrl); }
When you pass an interface as a type parameter to the
HttpClient.get()
method, use the RxJSmap
operator to transform the response data as needed by the UI. You can then pass the transformed data to the async pipe.
The callback in the updated component method receives a typed data object, which is easier and safer to consume:
config: Config | undefined; showConfig() { this.configService.getConfig() // clone the data object, using its known Config shape .subscribe((data: Config) => this.config = { ...data }); }
To access properties that are defined in an interface, you must explicitly convert the plain object you get from the JSON to the required response type. For example, the following subscribe
callback receives data
as an Object, and then type-casts it in order to access the properties.
.subscribe(data => this.config = { heroesUrl: (data as any).heroesUrl, textfile: (data as any).textfile, });
observe
and response
typesThe types of the observe
and response
options are string unions, rather than plain strings.
options: { … observe?: 'body' | 'events' | 'response', … responseType?: 'arraybuffer'|'blob'|'json'|'text', … }
This can cause confusion. For example:
// this works client.get('/foo', {responseType: 'text'}) // but this does NOT work const options = { responseType: 'text', }; client.get('/foo', options)
In the second case, TypeScript infers the type of options
to be {responseType: string}
. The type is too wide to pass to HttpClient.get
which is expecting the type of responseType
to be one of the specific strings. HttpClient
is typed explicitly this way so that the compiler can report the correct return type based on the options you provided.
Use as const
to let TypeScript know that you really do mean to use a constant string type:
const options = { responseType: 'text' as const, }; client.get('/foo', options);
In the previous example, the call to HttpClient.get()
did not specify any options. By default, it returned the JSON data contained in the response body.
You might need more information about the transaction than is contained in the response body. Sometimes servers return special headers or status codes to indicate certain conditions that are important to the application workflow.
Tell HttpClient
that you want the full response with the observe
option of the get()
method:
getConfigResponse(): Observable<HttpResponse<Config>> { return this.http.get<Config>( this.configUrl, { observe: 'response' }); }
Now HttpClient.get()
returns an Observable
of type HttpResponse
rather than just the JSON data contained in the body.
The component's showConfigResponse()
method displays the response headers as well as the configuration:
showConfigResponse() { this.configService.getConfigResponse() // resp is of type `HttpResponse<Config>` .subscribe(resp => { // display its headers const keys = resp.headers.keys(); this.headers = keys.map(key => `${key}: ${resp.headers.get(key)}`); // access the body directly, which is typed as `Config`. this.config = { ...resp.body! }; }); }
As you can see, the response object has a body
property of the correct type.
Apps can use the HttpClient
to make JSONP requests across domains when a server doesn't support CORS protocol.
Angular JSONP requests return an Observable
. Follow the pattern for subscribing to observables and use the RxJS map
operator to transform the response before using the async pipe to manage the results.
In Angular, use JSONP by including HttpClientJsonpModule
in the NgModule
imports. In the following example, the searchHeroes()
method uses a JSONP request to query for heroes whose names contain the search term.
/* GET heroes whose name contains search term */ searchHeroes(term: string): Observable { term = term.trim(); const heroesURL = `${this.heroesURL}?${term}`; return this.http.jsonp(heroesUrl, 'callback').pipe( catchError(this.handleError('searchHeroes', [])) // then handle the error ); }
This request passes the heroesURL
as the first parameter and the callback function name as the second parameter. The response is wrapped in the callback function, which takes the observables returned by the JSONP method and pipes them through to the error handler.
Not all APIs return JSON data. In this next example, a DownloaderService
method reads a text file from the server and logs the file contents, before returning those contents to the caller as an Observable<string>
.
getTextFile(filename: string) { // The Observable returned by get() is of type Observable<string> // because a text response was specified. // There's no need to pass a <string> type parameter to get(). return this.http.get(filename, {responseType: 'text'}) .pipe( tap( // Log the result or error { next: (data) => this.log(filename, data), error: (error) => this.logError(filename, error) } ) ); }
HttpClient.get()
returns a string rather than the default JSON because of the responseType
option.
The RxJS tap
operator lets the code inspect both success and error values passing through the observable without disturbing them.
A download()
method in the DownloaderComponent
initiates the request by subscribing to the service method.
download() { this.downloaderService.getTextFile('assets/textfile.txt') .subscribe(results => this.contents = results); }
If the request fails on the server, HttpClient
returns an error object instead of a successful response.
The same service that performs your server transactions should also perform error inspection, interpretation, and resolution.
When an error occurs, you can obtain details of what failed in order to inform your user. In some cases, you might also automatically retry the request.
An app should give the user useful feedback when data access fails. A raw error object is not particularly useful as feedback. In addition to detecting that an error has occurred, you need to get error details and use those details to compose a user-friendly response.
Two types of errors can occur.
The server backend might reject the request, returning an HTTP response with a status code such as 404 or 500. These are error responses.
Something could go wrong on the client-side such as a network error that prevents the request from completing successfully or an exception thrown in an RxJS operator. These errors have status
set to 0
and the error
property contains a ProgressEvent
object, whose type
might provide further information.
HttpClient
captures both kinds of errors in its HttpErrorResponse
. Inspect that response to identify the error's cause.
The following example defines an error handler in the previously defined ConfigService.
private handleError(error: HttpErrorResponse) { if (error.status === 0) { // A client-side or network error occurred. Handle it accordingly. console.error('An error occurred:', error.error); } else { // The backend returned an unsuccessful response code. // The response body may contain clues as to what went wrong. console.error( `Backend returned code ${error.status}, body was: `, error.error); } // Return an observable with a user-facing error message. return throwError(() => new Error('Something bad happened; please try again later.')); }
The handler returns an RxJS ErrorObservable
with a user-friendly error message. The following code updates the getConfig()
method, using a pipe to send all observables returned by the HttpClient.get()
call to the error handler.
getConfig() { return this.http.get<Config>(this.configUrl) .pipe( catchError(this.handleError) ); }
Sometimes the error is transient and goes away automatically if you try again. For example, network interruptions are common in mobile scenarios, and trying again can produce a successful result.
The RxJS library offers several retry operators. For example, the retry()
operator automatically re-subscribes to a failed Observable
a specified number of times. Re-subscribing to the result of an HttpClient
method call has the effect of reissuing the HTTP request.
The following example shows how to pipe a failed request to the retry()
operator before passing it to the error handler.
getConfig() { return this.http.get<Config>(this.configUrl) .pipe( retry(3), // retry a failed request up to 3 times catchError(this.handleError) // then handle the error ); }
In addition to fetching data from a server, HttpClient
supports other HTTP methods such as PUT, POST, and DELETE, which you can use to modify the remote data.
The sample app for this guide includes an abridged version of the "Tour of Heroes" example that fetches heroes and enables users to add, delete, and update them. The following sections show examples of the data-update methods from the sample's HeroesService
.
Apps often send data to a server with a POST request when submitting a form. In the following example, the HeroesService
makes an HTTP POST request when adding a hero to the database.
/** POST: add a new hero to the database */ addHero(hero: Hero): Observable<Hero> { return this.http.post<Hero>(this.heroesUrl, hero, httpOptions) .pipe( catchError(this.handleError('addHero', hero)) ); }
The HttpClient.post()
method is similar to get()
in that it has a type parameter, which you can use to specify that you expect the server to return data of a given type. The method takes a resource URL and two additional parameters:
Parameter | Details |
---|---|
body | The data to POST in the body of the request. |
options | An object containing method options which, in this case, specify required headers. |
The example catches errors as described above.
The HeroesComponent
initiates the actual POST operation by subscribing to the Observable
returned by this service method.
this.heroesService .addHero(newHero) .subscribe(hero => this.heroes.push(hero));
When the server responds successfully with the newly added hero, the component adds that hero to the displayed heroes
list.
This application deletes a hero with the HttpClient.delete
method by passing the hero's ID in the request URL.
/** DELETE: delete the hero from the server */ deleteHero(id: number): Observable<unknown> { const url = `${this.heroesUrl}/${id}`; // DELETE api/heroes/42 return this.http.delete(url, httpOptions) .pipe( catchError(this.handleError('deleteHero')) ); }
The HeroesComponent
initiates the actual DELETE operation by subscribing to the Observable
returned by this service method.
this.heroesService .deleteHero(hero.id) .subscribe();
The component isn't expecting a result from the delete operation, so it subscribes without a callback. Even though you are not using the result, you still have to subscribe. Calling the subscribe()
method executes the observable, which is what initiates the DELETE request.
You must call
subscribe()
or nothing happens. Just callingHeroesService.deleteHero()
does not initiate the DELETE request.
// oops ... subscribe() is missing so nothing happens this.heroesService.deleteHero(hero.id);
An app can send PUT requests using the HTTP client service. The following HeroesService
example, like the POST example, replaces a resource with updated data.
/** PUT: update the hero on the server. Returns the updated hero upon success. */ updateHero(hero: Hero): Observable<Hero> { return this.http.put<Hero>(this.heroesUrl, hero, httpOptions) .pipe( catchError(this.handleError('updateHero', hero)) ); }
As for any of the HTTP methods that return an observable, the caller, HeroesComponent.update()
must subscribe()
to the observable returned from the HttpClient.put()
in order to initiate the request.
Many servers require extra headers for save operations. For example, a server might require an authorization token, or "Content-Type" header to explicitly declare the MIME type of the request body.
The HeroesService
defines such headers in an httpOptions
object that are passed to every HttpClient
save method.
import { HttpHeaders } from '@angular/common/http'; const httpOptions = { headers: new HttpHeaders({ 'Content-Type': 'application/json', Authorization: 'my-auth-token' }) };
You can't directly modify the existing headers within the previous options object because instances of the HttpHeaders
class are immutable. Use the set()
method instead, to return a clone of the current instance with the new changes applied.
The following example shows how, when an old token expires, you can update the authorization header before making the next request.
httpOptions.headers = httpOptions.headers.set('Authorization', 'my-new-auth-token');
Use the HttpParams
class with the params
request option to add URL query strings in your HttpRequest
.
The following example, the searchHeroes()
method queries for heroes whose names contain the search term.
Start by importing HttpParams
class.
import {HttpParams} from "@angular/common/http";
/* GET heroes whose name contains search term */ searchHeroes(term: string): Observable<Hero[]> { term = term.trim(); // Add safe, URL encoded search parameter if there is a search term const options = term ? { params: new HttpParams().set('name', term) } : {}; return this.http.get<Hero[]>(this.heroesUrl, options) .pipe( catchError(this.handleError<Hero[]>('searchHeroes', [])) ); }
If there is a search term, the code constructs an options object with an HTML URL-encoded search parameter. If the term is "cat", for example, the GET request URL would be api/heroes?name=cat
.
The HttpParams
object is immutable. If you need to update the options, save the returned value of the .set()
method.
You can also create HTTP parameters directly from a query string by using the fromString
variable:
const params = new HttpParams({fromString: 'name=foo'});
With interception, you declare interceptors that inspect and transform HTTP requests from your application to a server. The same interceptors can also inspect and transform a server's responses on their way back to the application. Multiple interceptors form a forward-and-backward chain of request/response handlers.
Interceptors can perform a variety of implicit tasks, from authentication to logging, in a routine, standard way, for every HTTP request/response.
Without interception, developers would have to implement these tasks explicitly for each HttpClient
method call.
To implement an interceptor, declare a class that implements the intercept()
method of the HttpInterceptor
interface.
Here is a do-nothing noop
interceptor that passes the request through without touching it:
import { Injectable } from '@angular/core'; import { HttpEvent, HttpInterceptor, HttpHandler, HttpRequest } from '@angular/common/http'; import { Observable } from 'rxjs'; /** Pass untouched request through to the next request handler. */ @Injectable() export class NoopInterceptor implements HttpInterceptor { intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> { return next.handle(req); } }
The intercept
method transforms a request into an Observable
that eventually returns the HTTP response. In this sense, each interceptor is fully capable of handling the request entirely by itself.
Most interceptors inspect the request on the way in and forward the potentially altered request to the handle()
method of the next
object which implements the HttpHandler
interface.
export abstract class HttpHandler { abstract handle(req: HttpRequest<any>): Observable<HttpEvent<any>>; }
Like intercept()
, the handle()
method transforms an HTTP request into an Observable
of HttpEvents
which ultimately include the server's response. The intercept()
method could inspect that observable and alter it before returning it to the caller.
This no-op
interceptor calls next.handle()
with the original request and returns the observable without doing a thing.
next
objectThe next
object represents the next interceptor in the chain of interceptors. The final next
in the chain is the HttpClient
backend handler that sends the request to the server and receives the server's response.
Most interceptors call next.handle()
so that the request flows through to the next interceptor and, eventually, the backend handler. An interceptor could skip calling next.handle()
, short-circuit the chain, and return its own Observable
with an artificial server response.
This is a common middleware pattern found in frameworks such as Express.js.
The NoopInterceptor
is a service managed by Angular's dependency injection (DI) system. Like other services, you must provide the interceptor class before the app can use it.
Because interceptors are optional dependencies of the HttpClient
service, you must provide them in the same injector or a parent of the injector that provides HttpClient
. Interceptors provided after DI creates the HttpClient
are ignored.
This app provides HttpClient
in the app's root injector, as a side-effect of importing the HttpClientModule
in AppModule
. You should provide interceptors in AppModule
as well.
After importing the HTTP_INTERCEPTORS
injection token from @angular/common/http
, write the NoopInterceptor
provider like this:
{ provide: HTTP_INTERCEPTORS, useClass: NoopInterceptor, multi: true },
Notice the multi: true
option. This required setting tells Angular that HTTP_INTERCEPTORS
is a token for a multiprovider that injects an array of values, rather than a single value.
You could add this provider directly to the providers array of the AppModule
. However, it's rather verbose and there's a good chance that you'll create more interceptors and provide them in the same way. You must also pay close attention to the order in which you provide these interceptors.
Consider creating a "barrel" file that gathers all the interceptor providers into an httpInterceptorProviders
array, starting with this first one, the NoopInterceptor
.
/* "Barrel" of Http Interceptors */ import { HTTP_INTERCEPTORS } from '@angular/common/http'; import { NoopInterceptor } from './noop-interceptor'; /** Http interceptor providers in outside-in order */ export const httpInterceptorProviders = [ { provide: HTTP_INTERCEPTORS, useClass: NoopInterceptor, multi: true }, ];
Then import and add it to the AppModule
providers array
like this:
providers: [ httpInterceptorProviders ],
As you create new interceptors, add them to the httpInterceptorProviders
array and you won't have to revisit the AppModule
.
There are many more interceptors in the complete sample code.
Angular applies interceptors in the order that you provide them. For example, consider a situation in which you want to handle the authentication of your HTTP requests and log them before sending them to a server. To accomplish this task, you could provide an AuthInterceptor
service and then a LoggingInterceptor
service. Outgoing requests would flow from the AuthInterceptor
to the LoggingInterceptor
. Responses from these requests would flow in the other direction, from LoggingInterceptor
back to AuthInterceptor
. The following is a visual representation of the process:
The last interceptor in the process is always the
HttpBackend
that handles communication with the server.
You cannot change the order or remove interceptors later. If you need to enable and disable an interceptor dynamically, you'll have to build that capability into the interceptor itself.
Most HttpClient
methods return observables of HttpResponse<any>
. The HttpResponse
class itself is actually an event, whose type is HttpEventType.Response
. A single HTTP request can, however, generate multiple events of other types, including upload and download progress events. The methods HttpInterceptor.intercept()
and HttpHandler.handle()
return observables of HttpEvent<any>
.
Many interceptors are only concerned with the outgoing request and return the event stream from next.handle()
without modifying it. Some interceptors, however, need to examine and modify the response from next.handle()
; these operations can see all of these events in the stream.
Although interceptors are capable of modifying requests and responses, the HttpRequest
and HttpResponse
instance properties are readonly
, rendering them largely immutable. They are immutable for a good reason: An app might retry a request several times before it succeeds, which means that the interceptor chain can re-process the same request multiple times. If an interceptor could modify the original request object, the re-tried operation would start from the modified request rather than the original. Immutability ensures that interceptors see the same request for each try.
Your interceptor should return every event without modification unless it has a compelling reason to do otherwise.
TypeScript prevents you from setting HttpRequest
read-only properties.
// Typescript disallows the following assignment because req.url is readonly req.url = req.url.replace('http://', 'https://');
If you must alter a request, clone it first and modify the clone before passing it to next.handle()
. You can clone and modify the request in a single step, as shown in the following example.
// clone request and replace 'http://' with 'https://' at the same time const secureReq = req.clone({ url: req.url.replace('http://', 'https://') }); // send the cloned, "secure" request to the next handler. return next.handle(secureReq);
The clone()
method's hash argument lets you mutate specific properties of the request while copying the others.
The readonly
assignment guard can't prevent deep updates and, in particular, it can't prevent you from modifying a property of a request body object.
req.body.name = req.body.name.trim(); // bad idea!
If you must modify the request body, follow these steps.
clone()
method.// copy the body and trim whitespace from the name property const newBody = { ...body, name: body.name.trim() }; // clone request and set its body const newReq = req.clone({ body: newBody }); // send the cloned request to the next handler. return next.handle(newReq);
Sometimes you need to clear the request body rather than replace it. To do this, set the cloned request body to null
.
TIP: If you set the cloned request body to
undefined
, Angular assumes you intend to leave the body as is.
newReq = req.clone({ … }); // body not mentioned => preserve original body newReq = req.clone({ body: undefined }); // preserve original body newReq = req.clone({ body: null }); // clear the body
Following are a number of common uses for interceptors.
Apps often use an interceptor to set default headers on outgoing requests.
The sample app has an AuthService
that produces an authorization token. Here is its AuthInterceptor
that injects that service to get the token and adds an authorization header with that token to every outgoing request:
import { AuthService } from '../auth.service'; @Injectable() export class AuthInterceptor implements HttpInterceptor { constructor(private auth: AuthService) {} intercept(req: HttpRequest<any>, next: HttpHandler) { // Get the auth token from the service. const authToken = this.auth.getAuthorizationToken(); // Clone the request and replace the original headers with // cloned headers, updated with the authorization. const authReq = req.clone({ headers: req.headers.set('Authorization', authToken) }); // send cloned request with header to the next handler. return next.handle(authReq); } }
The practice of cloning a request to set new headers is so common that there's a setHeaders
shortcut for it:
// Clone the request and set the new header in one step. const authReq = req.clone({ setHeaders: { Authorization: authToken } });
An interceptor that alters headers can be used for a number of different operations, including:
If-Modified-Since
Because interceptors can process the request and response together, they can perform tasks such as timing and logging an entire HTTP operation.
Consider the following LoggingInterceptor
, which captures the time of the request, the time of the response, and logs the outcome with the elapsed time with the injected MessageService
.
import { finalize, tap } from 'rxjs/operators'; import { MessageService } from '../message.service'; @Injectable() export class LoggingInterceptor implements HttpInterceptor { constructor(private messenger: MessageService) {} intercept(req: HttpRequest<any>, next: HttpHandler) { const started = Date.now(); let ok: string; // extend server response observable with logging return next.handle(req) .pipe( tap({ // Succeeds when there is a response; ignore other events next: (event) => (ok = event instanceof HttpResponse ? 'succeeded' : ''), // Operation failed; error is an HttpErrorResponse error: (error) => (ok = 'failed') }), // Log when response observable either completes or errors finalize(() => { const elapsed = Date.now() - started; const msg = `${req.method} "${req.urlWithParams}" ${ok} in ${elapsed} ms.`; this.messenger.add(msg); }) ); } }
The RxJS tap
operator captures whether the request succeeded or failed. The RxJS finalize
operator is called when the response observable either returns an error or completes and reports the outcome to the MessageService
.
Neither tap
nor finalize
touch the values of the observable stream returned to the caller.
Interceptors can be used to replace the built-in JSON parsing with a custom implementation.
The CustomJsonInterceptor
in the following example demonstrates how to achieve this. If the intercepted request expects a 'json'
response, the responseType
is changed to 'text'
to disable the built-in JSON parsing. Then the response is parsed via the injected JsonParser
.
// The JsonParser class acts as a base class for custom parsers and as the DI token. @Injectable() export abstract class JsonParser { abstract parse(text: string): any; } @Injectable() export class CustomJsonInterceptor implements HttpInterceptor { constructor(private jsonParser: JsonParser) {} intercept(httpRequest: HttpRequest<any>, next: HttpHandler) { if (httpRequest.responseType === 'json') { // If the expected response type is JSON then handle it here. return this.handleJsonResponse(httpRequest, next); } else { return next.handle(httpRequest); } } private handleJsonResponse(httpRequest: HttpRequest<any>, next: HttpHandler) { // Override the responseType to disable the default JSON parsing. httpRequest = httpRequest.clone({responseType: 'text'}); // Handle the response using the custom parser. return next.handle(httpRequest).pipe(map(event => this.parseJsonResponse(event))); } private parseJsonResponse(event: HttpEvent<any>) { if (event instanceof HttpResponse && typeof event.body === 'string') { return event.clone({body: this.jsonParser.parse(event.body)}); } else { return event; } } }
You can then implement your own custom JsonParser
. Here is a custom JsonParser that has a special date reviver.
@Injectable() export class CustomJsonParser implements JsonParser { parse(text: string): any { return JSON.parse(text, dateReviver); } } function dateReviver(key: string, value: any) { /* . . . */ }
You provide the CustomParser
along with the CustomJsonInterceptor
.
{ provide: HTTP_INTERCEPTORS, useClass: CustomJsonInterceptor, multi: true }, { provide: JsonParser, useClass: CustomJsonParser },
Interceptors can handle requests by themselves, without forwarding to next.handle()
.
For example, you might decide to cache certain requests and responses to improve performance. You can delegate caching to an interceptor without disturbing your existing data services.
The CachingInterceptor
in the following example demonstrates this approach.
@Injectable() export class CachingInterceptor implements HttpInterceptor { constructor(private cache: RequestCache) {} intercept(req: HttpRequest<any>, next: HttpHandler) { // continue if not cacheable. if (!isCacheable(req)) { return next.handle(req); } const cachedResponse = this.cache.get(req); return cachedResponse ? of(cachedResponse) : sendRequest(req, next, this.cache); } }
The isCacheable()
function determines if the request is cacheable. In this sample, only GET requests to the package search API are cacheable.
If the request is not cacheable, the interceptor forwards the request to the next handler in the chain
If a cacheable request is found in the cache, the interceptor returns an of()
observable with the cached response, by-passing the next
handler and all other interceptors downstream
If a cacheable request is not in cache, the code calls sendRequest()
. This function forwards the request to next.handle()
which ultimately calls the server and returns the server's response.
/** * Get server response observable by sending request to `next()`. * Will add the response to the cache on the way out. */ function sendRequest( req: HttpRequest<any>, next: HttpHandler, cache: RequestCache): Observable<HttpEvent<any>> { return next.handle(req).pipe( tap(event => { // There may be other events besides the response. if (event instanceof HttpResponse) { cache.put(req, event); // Update the cache. } }) ); }
Notice how
sendRequest()
intercepts the response on its way back to the application. This method pipes the response through thetap()
operator, whose callback adds the response to the cache.The original response continues untouched back up through the chain of interceptors to the application caller.
Data services, such as
PackageSearchService
, are unaware that some of theirHttpClient
requests actually return cached responses.
The HttpClient.get()
method normally returns an observable that emits a single value, either the data or an error. An interceptor can change this to an observable that emits multiple values.
The following revised version of the CachingInterceptor
optionally returns an observable that immediately emits the cached response, sends the request on to the package search API, and emits again later with the updated search results.
// cache-then-refresh if (req.headers.get('x-refresh')) { const results$ = sendRequest(req, next, this.cache); return cachedResponse ? results$.pipe( startWith(cachedResponse) ) : results$; } // cache-or-fetch return cachedResponse ? of(cachedResponse) : sendRequest(req, next, this.cache);
The cache-then-refresh option is triggered by the presence of a custom
x-refresh
header.A checkbox on the
PackageSearchComponent
toggles awithRefresh
flag, which is one of the arguments toPackageSearchService.search()
. Thatsearch()
method creates the customx-refresh
header and adds it to the request before callingHttpClient.get()
.
The revised CachingInterceptor
sets up a server request whether there's a cached value or not, using the same sendRequest()
method described above. The results$
observable makes the request when subscribed.
results$
.results$
. This produces a recomposed observable that emits two responses, so subscribers will see a sequence of these two responses: Sometimes applications transfer large amounts of data and those transfers can take a long time. File uploads are a typical example. You can give the users a better experience by providing feedback on the progress of such transfers.
To make a request with progress events enabled, create an instance of HttpRequest
with the reportProgress
option set true to enable tracking of progress events.
const req = new HttpRequest('POST', '/upload/file', file, { reportProgress: true });
TIP: Every progress event triggers change detection, so only turn them on if you need to report progress in the UI.
When using
HttpClient.request()
with an HTTP method, configure the method withobserve: 'events'
to see all events, including the progress of transfers.
Next, pass this request object to the HttpClient.request()
method, which returns an Observable
of HttpEvents
(the same events processed by interceptors).
// The `HttpClient.request` API produces a raw event stream // which includes start (sent), progress, and response events. return this.http.request(req).pipe( map(event => this.getEventMessage(event, file)), tap(message => this.showProgress(message)), last(), // return last (completed) message to caller catchError(this.handleError(file)) );
The getEventMessage
method interprets each type of HttpEvent
in the event stream.
/** Return distinct message for sent, upload progress, & response events */ private getEventMessage(event: HttpEvent<any>, file: File) { switch (event.type) { case HttpEventType.Sent: return `Uploading file "${file.name}" of size ${file.size}.`; case HttpEventType.UploadProgress: // Compute and show the % done: const percentDone = event.total ? Math.round(100 * event.loaded / event.total) : 0; return `File "${file.name}" is ${percentDone}% uploaded.`; case HttpEventType.Response: return `File "${file.name}" was completely uploaded!`; default: return `File "${file.name}" surprising upload event: ${event.type}.`; } }
The sample app for this guide doesn't have a server that accepts uploaded files. The
UploadInterceptor
inapp/http-interceptors/upload-interceptor.ts
intercepts and short-circuits upload requests by returning an observable of simulated events.
If you need to make an HTTP request in response to user input, it's not efficient to send a request for every keystroke. It's better to wait until the user stops typing and then send a request. This technique is known as debouncing.
Consider the following template, which lets a user enter a search term to find a package by name. When the user enters a name in a search-box, the PackageSearchComponent
sends a search request for a package with that name to the package search API.
<input type="text" (keyup)="search(getValue($event))" id="name" placeholder="Search"/> <ul> <li *ngFor="let package of packages$ | async"> <b>{{package.name}} v.{{package.version}}</b> - <i>{{package.description}}</i> </li> </ul>
Here, the keyup
event binding sends every keystroke to the component's search()
method.
The type of
$event.target
is onlyEventTarget
in the template. In thegetValue()
method, the target is cast to anHTMLInputElement
to let type-safe have access to itsvalue
property.getValue(event: Event): string { return (event.target as HTMLInputElement).value; }
The following snippet implements debouncing for this input using RxJS operators.
withRefresh = false; packages$!: Observable<NpmPackageInfo[]>; private searchText$ = new Subject<string>(); search(packageName: string) { this.searchText$.next(packageName); } ngOnInit() { this.packages$ = this.searchText$.pipe( debounceTime(500), distinctUntilChanged(), switchMap(packageName => this.searchService.search(packageName, this.withRefresh)) ); } constructor(private searchService: PackageSearchService) { }
The searchText$
is the sequence of search-box values coming from the user. It's defined as an RxJS Subject
, which means it is a multicasting Observable
that can also emit values for itself by calling next(value)
, as happens in the search()
method.
Rather than forward every searchText
value directly to the injected PackageSearchService
, the code in ngOnInit()
pipes search values through three operators, so that a search value reaches the service only if it's a new value and the user stopped typing.
RxJS operators | Details |
---|---|
debounceTime(500) | Wait for the user to stop typing, which is 1/2 second in this case. |
distinctUntilChanged() | Wait until the search text changes. |
switchMap() | Send the search request to the service. |
The code sets packages$
to this re-composed Observable
of search results. The template subscribes to packages$
with the AsyncPipe and displays search results as they arrive.
See Using interceptors to request multiple values for more about the
withRefresh
option.
switchMap()
operatorThe switchMap()
operator takes a function argument that returns an Observable
. In the example, PackageSearchService.search
returns an Observable
, as other data service methods do. If a previous search request is still in-flight, such as when the network connection is poor, the operator cancels that request and sends a new one.
NOTE:
switchMap()
returns service responses in their original request order, even if the server returns them out of order.
If you think you'll reuse this debouncing logic, consider moving it to a utility function or into the
PackageSearchService
itself.
Cross-Site Request Forgery (XSRF or CSRF) is an attack technique by which the attacker can trick an authenticated user into unknowingly executing actions on your website. HttpClient
supports a common mechanism used to prevent XSRF attacks. When performing HTTP requests, an interceptor reads a token from a cookie, by default XSRF-TOKEN
, and sets it as an HTTP header, X-XSRF-TOKEN
. Because only code that runs on your domain could read the cookie, the backend can be certain that the HTTP request came from your client application and not an attacker.
By default, an interceptor sends this header on all mutating requests (such as POST) to relative URLs, but not on GET/HEAD requests or on requests with an absolute URL.
To take advantage of this, your server needs to set a token in a JavaScript readable session cookie called XSRF-TOKEN
on either the page load or the first GET request. On subsequent requests the server can verify that the cookie matches the X-XSRF-TOKEN
HTTP header, and therefore be sure that only code running on your domain could have sent the request. The token must be unique for each user and must be verifiable by the server; this prevents the client from making up its own tokens. Set the token to a digest of your site's authentication cookie with a salt for added security.
To prevent collisions in environments where multiple Angular apps share the same domain or subdomain, give each application a unique cookie name.
HttpClient
supports only the client half of the XSRF protection scheme. Your backend service must be configured to set the cookie for your page, and to verify that the header is present on all eligible requests. Failing to do so renders Angular's default protection ineffective.
If your backend service uses different names for the XSRF token cookie or header, use HttpClientXsrfModule.withOptions()
to override the defaults.
imports: [ HttpClientModule, HttpClientXsrfModule.withOptions({ cookieName: 'My-Xsrf-Cookie', headerName: 'My-Xsrf-Header', }), ],
As for any external dependency, you must mock the HTTP backend so your tests can simulate interaction with a remote server. The @angular/common/http/testing
library makes it straightforward to set up such mocking.
Angular's HTTP testing library is designed for a pattern of testing in which the app executes code and makes requests first. The test then expects that certain requests have or have not been made, performs assertions against those requests, and finally provides responses by "flushing" each expected request.
At the end, tests can verify that the app made no unexpected requests.
You can run these sample tests in a live coding environment.
The tests described in this guide are in
src/testing/http-client.spec.ts
. There are also tests of an application data service that callHttpClient
insrc/app/heroes/heroes.service.spec.ts
.
To begin testing calls to HttpClient
, import the HttpClientTestingModule
and the mocking controller, HttpTestingController
, along with the other symbols your tests require.
// Http testing module and mocking controller import { HttpClientTestingModule, HttpTestingController } from '@angular/common/http/testing'; // Other imports import { TestBed } from '@angular/core/testing'; import { HttpClient, HttpErrorResponse } from '@angular/common/http';
Then add the HttpClientTestingModule
to the TestBed
and continue with the setup of the service-under-test.
describe('HttpClient testing', () => { let httpClient: HttpClient; let httpTestingController: HttpTestingController; beforeEach(() => { TestBed.configureTestingModule({ imports: [ HttpClientTestingModule ] }); // Inject the http service and test controller for each test httpClient = TestBed.inject(HttpClient); httpTestingController = TestBed.inject(HttpTestingController); }); /// Tests begin /// });
Now requests made in the course of your tests hit the testing backend instead of the normal backend.
This setup also calls TestBed.inject()
to inject the HttpClient
service and the mocking controller so they can be referenced during the tests.
Now you can write a test that expects a GET Request to occur and provides a mock response.
it('can test HttpClient.get', () => { const testData: Data = {name: 'Test Data'}; // Make an HTTP GET request httpClient.get<Data>(testUrl) .subscribe(data => // When observable resolves, result should match test data expect(data).toEqual(testData) ); // The following `expectOne()` will match the request's URL. // If no requests or multiple requests matched that URL // `expectOne()` would throw. const req = httpTestingController.expectOne('/data'); // Assert that the request is a GET. expect(req.request.method).toEqual('GET'); // Respond with mock data, causing Observable to resolve. // Subscribe callback asserts that correct data was returned. req.flush(testData); // Finally, assert that there are no outstanding requests. httpTestingController.verify(); });
The last step, verifying that no requests remain outstanding, is common enough for you to move it into an afterEach()
step:
afterEach(() => { // After every test, assert that there are no more pending requests. httpTestingController.verify(); });
If matching by URL isn't sufficient, it's possible to implement your own matching function. For example, you could look for an outgoing request that has an authorization header:
// Expect one request with an authorization header const req = httpTestingController.expectOne( request => request.headers.has('Authorization') );
As with the previous expectOne()
, the test fails if 0 or 2+ requests satisfy this predicate.
If you need to respond to duplicate requests in your test, use the match()
API instead of expectOne()
. It takes the same arguments but returns an array of matching requests. Once returned, these requests are removed from future matching and you are responsible for flushing and verifying them.
// get all pending requests that match the given URL const requests = httpTestingController.match(testUrl); expect(requests.length).toEqual(3); // Respond to each request with different results requests[0].flush([]); requests[1].flush([testData[0]]); requests[2].flush(testData);
You should test the app's defenses against HTTP requests that fail.
Call request.flush()
with an error message, as seen in the following example.
it('can test for 404 error', () => { const emsg = 'deliberate 404 error'; httpClient.get<Data[]>(testUrl).subscribe({ next: () => fail('should have failed with the 404 error'), error: (error: HttpErrorResponse) => { expect(error.status).withContext('status').toEqual(404); expect(error.error).withContext('message').toEqual(emsg); }, }); const req = httpTestingController.expectOne(testUrl); // Respond with mock error req.flush(emsg, { status: 404, statusText: 'Not Found' }); });
Alternatively, call request.error()
with a ProgressEvent
.
it('can test for network error', done => { // Create mock ProgressEvent with type `error`, raised when something goes wrong // at network level. e.g. Connection timeout, DNS error, offline, etc. const mockError = new ProgressEvent('error'); httpClient.get<Data[]>(testUrl).subscribe({ next: () => fail('should have failed with the network error'), error: (error: HttpErrorResponse) => { expect(error.error).toBe(mockError); done(); }, }); const req = httpTestingController.expectOne(testUrl); // Respond with mock error req.error(mockError); });
Many interceptors require or benefit from configuration. Consider an interceptor that retries failed requests. By default, the interceptor might retry a request three times, but you might want to override this retry count for particularly error-prone or sensitive requests.
HttpClient
requests contain a context that can carry metadata about the request. This context is available for interceptors to read or modify, though it is not transmitted to the backend server when the request is sent. This lets applications or other interceptors tag requests with configuration parameters, such as how many times to retry a request.
Angular stores and retrieves a value in the context using an HttpContextToken
. You can create a context token using the new
operator, as in the following example:
export const RETRY_COUNT = new HttpContextToken(() => 3);
The lambda function () => 3
passed during the creation of the HttpContextToken
serves two purposes:
It lets TypeScript infer the type of this token: HttpContextToken<number>
The request context is type-safe —reading a token from a request's context returns a value of the appropriate type.
It sets the default value for the token. This is the value that the request context returns if no other value was set for this token. Using a default value avoids the need to check if a particular value is set.
When making a request, you can provide an HttpContext
instance, in which you have already set the context values.
this.httpClient .get('/data/feed', { context: new HttpContext().set(RETRY_COUNT, 5), }) .subscribe(results => {/* ... */});
Within an interceptor, you can read the value of a token in a given request's context with HttpContext.get()
. If you have not explicitly set a value for the token, Angular returns the default value specified in the token.
import {retry} from 'rxjs'; export class RetryInterceptor implements HttpInterceptor { intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> { const retryCount = req.context.get(RETRY_COUNT); return next.handle(req).pipe( // Retry the request a configurable number of times. retry(retryCount), ); } }
Unlike most other aspects of HttpRequest
instances, the request context is mutable and persists across other immutable transformations of the request. This lets interceptors coordinate operations through the context. For instance, the RetryInterceptor
example could use a second context token to track how many errors occur during the execution of a given request:
import {retry, tap} from 'rxjs/operators'; export const RETRY_COUNT = new HttpContextToken(() => 3); export const ERROR_COUNT = new HttpContextToken(() => 0); export class RetryInterceptor implements HttpInterceptor { intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> { const retryCount = req.context.get(RETRY_COUNT); return next.handle(req).pipe( tap({ // An error has occurred, so increment this request's ERROR_COUNT. error: () => req.context.set(ERROR_COUNT, req.context.get(ERROR_COUNT) + 1) }), // Retry the request a configurable number of times. retry(retryCount), ); } }
© 2010–2022 Google, Inc.
Licensed under the Creative Commons Attribution License 4.0.
https://angular.io/guide/http