Defined in header <math.h> | ||
---|---|---|
float erfcf( float arg ); | (1) | (since C99) |
double erfc( double arg ); | (2) | (since C99) |
long double erfcl( long double arg ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define erfc( arg ) | (4) | (since C99) |
arg
, that is 1.0-erf(arg)
, but without loss of precision for large arg
.arg
has type long double
, erfcl
is called. Otherwise, if arg
has integer type or the type double
, erfc
is called. Otherwise, erfcf
is called.arg | - | floating point value |
arg
, that is \(\frac{2}{\sqrt{\pi} }\int_{arg}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)2/√π∫∞If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
For the IEEE-compatible type double
, underflow is guaranteed if arg
> 26.55.
#include <stdio.h> #include <math.h> double normalCDF(double x) // Phi(-∞, x) aka N(x) { return erfc(-x/sqrt(2))/2; } int main(void) { puts("normal cumulative distribution function:"); for(double n=0; n<1; n+=0.1) printf("normalCDF(%.2f) %5.2f%%\n", n, 100*normalCDF(n)); puts("special values:"); printf("erfc(-Inf) = %f\n", erfc(-INFINITY)); printf("erfc(Inf) = %f\n", erfc(INFINITY)); }
Output:
normal cumulative distribution function: normalCDF(0.00) 50.00% normalCDF(0.10) 53.98% normalCDF(0.20) 57.93% normalCDF(0.30) 61.79% normalCDF(0.40) 65.54% normalCDF(0.50) 69.15% normalCDF(0.60) 72.57% normalCDF(0.70) 75.80% normalCDF(0.80) 78.81% normalCDF(0.90) 81.59% normalCDF(1.00) 84.13% special values: erfc(-Inf) = 2.000000 erfc(Inf) = 0.000000
(C99)(C99)(C99) | computes error function (function) |
C++ documentation for erfc |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/c/numeric/math/erfc