Defined in header <algorithm> | ||
|---|---|---|
| Call signature | ||
template< std::input_iterator I1, std::sentinel_for<I1> S1,
std::input_iterator I2, std::sentinel_for<I2> S2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity >
requires (std::forward_iterator<I1> || std::sized_sentinel_for<S1, I1>) &&
(std::forward_iterator<I2> || std::sized_sentinel_for<S2, I2>) &&
std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ends_with( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {} );
| (1) | (since C++23) |
template< ranges::input_range R1, ranges::input_range R2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity >
requires (ranges::forward_range<R1> || ranges::sized_range<R1>) &&
(ranges::forward_range<R2> || ranges::sized_range<R2>) &&
std::indirectly_comparable<ranges::iterator_t<R1>,
ranges::iterator_t<R2>,
Pred, Proj1, Proj2>
constexpr bool ends_with( R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {} );
| (2) | (since C++23) |
Checks whether the second range matches the suffix of the first range.
N1 and N2 be ranges::distance(first1, last1) and ranges::distance(first2, last2) respectively. If N1 < N2, returns false. Otherwise, returns true if only if every element in the range [first2, last2) is equal to the corresponding element in [first1 + N1 - N2, last1). Comparison is done by applying the binary predicate pred to elements in two ranges projected by proj1 and proj2 respectively.r1 and r2 as the source ranges, as if using ranges::begin(r1) as first1, ranges:begin(r2) as first2, ranges::end(r1) as last1, and ranges::end(r2) as last2.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
| first1, last1 | - | the range of elements to examine |
| r1 | - | the range of elements to examine |
| first2, last2 | - | the range of elements to be used as the suffix |
| r2 | - | the range of elements to be used as the suffix |
| pred | - | the binary predicate that compares the projected elements |
| proj1 | - | the projection to apply to the elements of the range to examine |
| proj2 | - | the projection to apply to the elements of the range to be used as the suffix |
true if the second range matches the suffix of the first range, false otherwise.
Generally linear: at most min(N1, N2) applications of the predicate and both projections. The predicate and both projections are not applied if N1 < N2.
If both N1 and N2 can be calculated in constant time (i.e. both iterator-sentinel type pairs model sized_sentinel_for, or both range types model sized_range) and N1 < N2, the time complexity is constant.
struct ends_with_fn
{
template<std::input_iterator I1, std::sentinel_for<I1> S1,
std::input_iterator I2, std::sentinel_for<I2> S2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity>
requires (std::forward_iterator<I1> || std::sized_sentinel_for<S1, I1>) &&
(std::forward_iterator<I2> || std::sized_sentinel_for<S2, I2>) &&
std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {}) const
{
const auto n1 = ranges::distance(first1, last1);
const auto n2 = ranges::distance(first2, last2);
if (n1 < n2)
return false;
ranges::advance(first1, n1 - n2);
return ranges::equal(std::move(first1), std::move(last1),
std::move(first2), std::move(last2),
std::move(pred), std::move(proj1), std::move(proj2));
}
template<ranges::input_range R1, ranges::input_range R2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity>
requires (ranges::forward_range<R1> || ranges::sized_range<R1>) &&
(ranges::forward_range<R2> || ranges::sized_range<R2>) &&
std::indirectly_comparable<ranges::iterator_t<R1>,
ranges::iterator_t<R2>,
Pred, Proj1, Proj2>
constexpr bool operator()(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {}) const
{
return (*this)(ranges::begin(r1), ranges::end(r1),
ranges::begin(r2), ranges::end(r2),
std::move(pred), std::move(proj1), std::move(proj2));
}
};
inline constexpr ends_with_fn ends_with {}; |
| Feature-test macro | Value | Std | Comment |
|---|---|---|---|
__cpp_lib_ranges_starts_ends_with | 202106L | (C++23) |
std::ranges::starts_with, std::ranges::ends_with |
#include <algorithm>
#include <array>
#include <iostream>
int main()
{
std::cout
<< std::boolalpha
<< std::ranges::ends_with("static_cast", "cast") << '\n'
<< std::ranges::ends_with("const_cast", "cast") << '\n'
<< std::ranges::ends_with("reinterpret_cast", "cast") << '\n'
<< std::ranges::ends_with("dynamic_cast", "cast") << '\n'
<< std::ranges::ends_with("move", "cast") << '\n'
<< std::ranges::ends_with("move_if_noexcept", "cast") << '\n'
<< std::ranges::ends_with("forward", "cast") << '\n';
static_assert(
! std::ranges::ends_with("as_const", "cast") and
!! std::ranges::ends_with("bit_cast", "cast") and
! std::ranges::ends_with("to_underlying", "cast") and
!! std::ranges::ends_with(std::array {1,2,3,4}, std::array {3,4}) and
! std::ranges::ends_with(std::array {1,2,3,4}, std::array {4,5})
);
}Output:
true true true true false false false
|
(C++23) | checks whether a range starts with another range (niebloid) |
|
(C++20) | checks if the string ends with the given suffix (public member function of std::basic_string<CharT,Traits,Allocator>) |
|
(C++20) | checks if the string view ends with the given suffix (public member function of std::basic_string_view<CharT,Traits>) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/ends_with