Defined in header <algorithm> | ||
---|---|---|
Call signature | ||
template< std::input_iterator I, std::sentinel_for<I> S, class T, __indirectly_binary_left_foldable<T, I> F > constexpr auto fold_left( I first, S last, T init, F f ); | (1) | (since C++23) |
template< ranges::input_range R, class T, __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F > constexpr auto fold_left( R&& r, T init, F f ); | (2) | (since C++23) |
Helper concepts | ||
template< class F, class T, class I > concept __indirectly_binary_left_foldable = // exposition only /* see description */; | (3) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left
behaves like std::accumulate
's overload that accepts a binary predicate.
The behavior is undefined if [
first
,
last
)
is not a valid range.
[
first
,
last
)
. Equivalent to return ranges::fold_left_with_iter(std::move(first), last, std::move(init), f).value
.r
as the range, as if by using ranges::begin(r)
as first
and ranges::end(r)
as last
.template< class F, class T, class I, class U > concept __indirectly_binary_left_foldable_impl = // exposition only std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; template< class F, class T, class I > concept __indirectly_binary_left_foldable = // exposition only std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && __indirectly_binary_left_foldable_impl<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>;
The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
init | - | the initial value of the fold |
f | - | the binary function object |
An object of type U
that contains the result of left-fold of the given range over f
, where U
is equivalent to std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>
.
If the range is empty, U(std::move(init))
is returned.
struct fold_left_fn { template<std::input_iterator I, std::sentinel_for<I> S, class T, __indirectly_binary_left_foldable<T, I> F> constexpr auto operator()( I first, S last, T init, F f ) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>; if (first == last) return U(std::move(init)); U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), *first); return std::move(accum); } template<ranges::input_range R, class T, __indirectly_binary_left_foldable<T, ranges::iterator_t<R>> F> constexpr auto operator()( R&& r, T init, F f ) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_left_fn fold_left; |
Exactly ranges::distance(first, last)
applications of the function object f
.
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init |
U |
ranges::fold_left_first | left | first element |
std::optional<U> |
ranges::fold_right | right | init |
U |
ranges::fold_right_last | right | last element |
std::optional<U> |
ranges::fold_left_with_iter | left | init | (1) (2) where |
ranges::fold_left_first_with_iter | left | first element | (1) (2) where |
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_lib_ranges_fold | 202207L | (C++23) |
std::ranges fold algorithms |
#include <algorithm> #include <functional> #include <iostream> #include <ranges> #include <string> #include <utility> #include <vector> int main() { std::vector<int> v {1, 2, 3, 4, 5, 6, 7, 8}; int sum = std::ranges::fold_left(v.begin(), v.end(), 0, std::plus<int>()); // (1) std::cout << "sum: " << sum << '\n'; int mul = std::ranges::fold_left(v, 1, std::multiplies<int>()); // (2) std::cout << "mul: " << mul << '\n'; // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float sec = std::ranges::fold_left ( data | std::ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "sec: " << sec << '\n'; // use a program defined function object (lambda-expression): std::string str = std::ranges::fold_left ( v, "A", [](std::string s, int x) { return s + ':' + std::to_string(x); } ); std::cout << "str: " << str << '\n'; }
Output:
sum: 36 mul: 40320 sec: 42 str: A:1:2:3:4:5:6:7:8
(C++23) | left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) | right-folds a range of elements (niebloid) |
(C++23) | right-folds a range of elements using the last element as an initial value (niebloid) |
(C++23) | left-folds a range of elements, and returns a pair (iterator, value) (niebloid) |
(C++23) | left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional) (niebloid) |
sums up or folds a range of elements (function template) |
|
(C++17) | similar to std::accumulate , except out of order (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/fold_left