W3cubDocs

/C++

std::ranges::fold_right_last

Defined in header <algorithm>
Call signature
template< std::bidirectional_iterator I, std::sentinel_for<I> S,
          __indirectly_binary_right_foldable<std::iter_value_t<I>, I> F >
requires
    std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
constexpr auto
    fold_right_last( I first, S last, F f );
(1) (since C++23)
template< ranges::bidirectional_range R,
          __indirectly_binary_right_foldable<
              ranges::range_value_t<R>, ranges::iterator_t<R>> F >
requires
    std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
constexpr auto
    fold_right_last( R&& r, F f );
(2) (since C++23)
Helper concepts
template< class F, class T, class I >
    concept __indirectly_binary_left_foldable =    // exposition only
        /* see description */;
(3) (since C++23)
template< class F, class T, class I >
    concept __indirectly_binary_right_foldable =    // exposition only
        /* see description */;
(4) (since C++23)

Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(x1, f(x2, ...f(xn-1, xn))), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_right_last behaves like std::fold_left(ranges::reverse(r), *--last, __flipped(f)) (assuming the range is not empty).

The behavior is undefined if [firstlast) is not a valid range.

1) The range is [firstlast). Given U as decltype(ranges::fold_right(first, last, std::iter_value_t<I>(*first), f)), equivalent to:
if (first == last)
    return std::optional<U>();
I tail = ranges::prev(ranges::next(first, std::move(last)));
return std::optional<U>(std::in_place, ranges::fold_right(std::move(first), tail,
    std::iter_value_t<I>(*tail), std::move(f)));
2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
3) Equivalent to:
template< class F, class T, class I, class U >
    concept __indirectly_binary_left_foldable_impl =  // exposition only
        std::movable<T> &&
        std::movable<U> &&
        std::convertible_to<T, U> &&
        std::invocable<F&, U, std::iter_reference_t<I>> &&
        std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>;
 
template< class F, class T, class I >
    concept __indirectly_binary_left_foldable =      // exposition only
        std::copy_constructible<F> &&
        std::indirectly_readable<I> &&
        std::invocable<F&, T, std::iter_reference_t<I>> &&
        std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
            std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
        __indirectly_binary_left_foldable_impl<F, T, I,
            std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>;
4) Equivalent to:
template< class F, class T, class I >
    concept __indirectly_binary_right_foldable =      // exposition only
            __indirectly_binary_left_foldable<__flipped<F>, T, I>;

The helper class template flipped is equivalent to:

template< class F >
class __flipped       // exposition only
{
    F f;              // exposition only
public:
    template< class T, class U >
        requires std::invocable<F&, U, T>
    std::invoke_result_t<F&, U, T> operator()( T&&, U&& );
};

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value

An object of type std::optional<U> that contains the result of right-fold of the given range over f.

If the range is empty, std::optional<U>() is returned.

Possible implementations

struct fold_right_last_fn
{
    template<std::bidirectional_iterator I, std::sentinel_for<I> S,
             __indirectly_binary_right_foldable<std::iter_value_t<I>, I> F>
    requires
        std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
    constexpr auto operator()(I first, S last, F f) const
    {
        using U = decltype(
            ranges::fold_right(first, last, std::iter_value_t<I>(*first), f));
 
        if (first == last)
            return std::optional<U>();
        I tail = ranges::prev(ranges::next(first, std::move(last)));
        return std::optional<U>(std::in_place,
            ranges::fold_right(std::move(first), tail, std::iter_value_t<I>(*tail),
                               std::move(f)));
    }
 
    template<ranges::bidirectional_range R,
             __indirectly_binary_right_foldable<
                 ranges::range_value_t<R>, ranges::iterator_t<R>> F>
    requires
        std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
    constexpr auto operator()(R&& r, F f) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(f));
    }
};
 
inline constexpr fold_right_last_fn fold_right_last;

Complexity

Exactly ranges::distance(first, last) applications of the function object f.

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init

(1) std::in_value_result<I, U>

(2) std::in_value_result<BR, U>,

where BR is ranges::borrowed_iterator_t<R>

ranges::fold_left_first_with_iter left first element

(1) std::in_value_result<I, std::optional<U>>

(2) std::in_value_result<BR, std::optional<U>>

where BR is ranges::borrowed_iterator_t<R>

Feature-test macro Value Std Comment
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    auto v = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<std::string> vs {"A", "B", "C", "D"};
 
    auto r1 = std::ranges::fold_right_last(v.begin(), v.end(), std::plus<>()); // (1)
    std::cout << "*r1: " << *r1 << '\n';
 
    auto r2 = std::ranges::fold_right_last(vs, std::plus<>()); // (2)
    std::cout << "*r2: " << *r2 << '\n';
 
    // Use a program defined function object (lambda-expression):
    auto r3 = std::ranges::fold_right_last(v, [](int x, int y) { return x + y + 99; });
    std::cout << "*r3: " << *r3 << '\n';
 
    // Get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}};
    auto r4 = std::ranges::fold_right_last
    (
        data | std::ranges::views::values, std::multiplies<>()
    );
    std::cout << "*r4: " << *r4 << '\n';
}

Output:

*r1: 36
*r2: ABCD
*r3: 729
*r4: 42

References

  • C++23 standard (ISO/IEC 14882:2023):
    • 27.6.18 Fold [alg.fold]

See also

(C++23)
right-folds a range of elements
(niebloid)
(C++23)
left-folds a range of elements
(niebloid)
(C++23)
left-folds a range of elements using the first element as an initial value
(niebloid)
(C++23)
left-folds a range of elements, and returns a pair (iterator, value)
(niebloid)
(C++23)
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)
(niebloid)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate, except out of order
(function template)

© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/fold_right_last