Defined in header <iterator> | ||
---|---|---|
Call signature | ||
template< std::input_or_output_iterator I > constexpr void advance( I& i, std::iter_difference_t<I> n ); | (1) | (since C++20) |
template< std::input_or_output_iterator I, std::sentinel_for<I> S > constexpr void advance( I& i, S bound ); | (2) | (since C++20) |
template< std::input_or_output_iterator I, std::sentinel_for<I> S > constexpr std::iter_difference_t<I> advance( I& i, std::iter_difference_t<I> n, S bound ); | (3) | (since C++20) |
i
for n
times.i
until i == bound
.i
for n
times, or until i == bound
, whichever comes first.If n
is negative, the iterator is decremented. In this case, I
must model std::bidirectional_iterator
, and S
must be the same type as I
if bound
is provided, otherwise the behavior is undefined.
The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
i | - | iterator to be advanced |
bound | - | sentinel denoting the end of the range i is an iterator to |
n | - | number of maximal increments of i |
n
and the actual distance i
traversed.Linear.
However, if I
additionally models std::random_access_iterator
, or S
models std::sized_sentinel_for<I>
, or I
and S
model std::assignable_from<I&, S>
, complexity is constant.
The behavior is undefined if the specified sequence of increments or decrements would require that a non-incrementable iterator (such as the past-the-end iterator) is incremented, or that a non-decrementable iterator (such as the front iterator or the singular iterator) is decremented.
struct advance_fn { template<std::input_or_output_iterator I> constexpr void operator()(I& i, std::iter_difference_t<I> n) const { if constexpr (std::random_access_iterator<I>) i += n; else { while (n > 0) { --n; ++i; } if constexpr (std::bidirectional_iterator<I>) { while (n < 0) { ++n; --i; } } } } template<std::input_or_output_iterator I, std::sentinel_for<I> S> constexpr void operator()(I& i, S bound) const { if constexpr (std::assignable_from<I&, S>) i = std::move(bound); else if constexpr (std::sized_sentinel_for<S, I>) (*this)(i, bound - i); else while (i != bound) ++i; } template<std::input_or_output_iterator I, std::sentinel_for<I> S> constexpr std::iter_difference_t<I> operator()(I& i, std::iter_difference_t<I> n, S bound) const { if constexpr (std::sized_sentinel_for<S, I>) { // std::abs is not constexpr until C++23 auto abs = [](const std::iter_difference_t<I> x) { return x < 0 ? -x : x; }; if (const auto dist = abs(n) - abs(bound - i); dist < 0) { (*this)(i, bound); return -dist; } (*this)(i, n); return 0; } else { while (n > 0 && i != bound) { --n; ++i; } if constexpr (std::bidirectional_iterator<I>) { while (n < 0 && i != bound) { ++n; --i; } } return n; } } }; inline constexpr auto advance = advance_fn(); |
#include <iomanip> #include <iostream> #include <iterator> #include <vector> int main() { std::vector<int> v {3, 1, 4}; auto vi = v.begin(); std::ranges::advance(vi, 2); std::cout << "1) value: " << *vi << '\n' << std::boolalpha; std::ranges::advance(vi, v.end()); std::cout << "2) vi == v.end(): " << (vi == v.end()) << '\n'; std::ranges::advance(vi, -3); std::cout << "3) value: " << *vi << '\n'; std::cout << "4) diff: " << std::ranges::advance(vi, 2, v.end()) << ", value: " << *vi << '\n'; std::cout << "5) diff: " << std::ranges::advance(vi, 4, v.end()) << ", vi == v.end(): " << (vi == v.end()) << '\n'; }
Output:
1) value: 4 2) vi == v.end(): true 3) value: 3 4) diff: 0, value: 4 5) diff: 3, vi == v.end(): true
(C++20) | increment an iterator by a given distance or to a bound (niebloid) |
(C++20) | decrement an iterator by a given distance or to a bound (niebloid) |
(C++20) | returns the distance between an iterator and a sentinel, or between the beginning and end of a range (niebloid) |
advances an iterator by given distance (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/iterator/ranges/advance