Defined in header <cmath> | ||
---|---|---|
(1) | ||
float atanh ( float num ); double atanh ( double num ); long double atanh ( long double num ); | (until C++23) | |
/* floating-point-type */ atanh ( /* floating-point-type */ num ); | (since C++23) (constexpr since C++26) | |
float atanhf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double atanhl( long double num ); | (3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double atanh ( Integer num ); | (A) | (constexpr since C++26) |
num
. The library provides overloads of std::atanh
for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
double | (since C++11) |
num | - | floating-point or integer value |
If no errors occur, the inverse hyperbolic tangent of num
(tanh-1
(num), or artanh(num)), is returned.
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a pole error occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned (with the correct sign).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the argument is not on the interval [-1, +1], a range error occurs.
If the argument is ±1, a pole error occurs.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_DIVBYZERO
is raised FE_INVALID
is raised Although the C standard (to which C++ refers for this function) names this function "arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "inverse hyperbolic tangent" (used by POSIX) or "area hyperbolic tangent".
POSIX specifies that in case of underflow, num
is returned unmodified, and if that is not supported, an implementation-defined value no greater than DBL_MIN
, FLT_MIN
, and LDBL_MIN
is returned.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::atanh(num)
has the same effect as std::atanh(static_cast<double>(num))
.
#include <cerrno> #include <cfenv> #include <cfloat> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON int main() { std::cout << "atanh(0) = " << std::atanh(0) << '\n' << "atanh(-0) = " << std::atanh(-0.0) << '\n' << "atanh(0.9) = " << std::atanh(0.9) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "atanh(-1) = " << std::atanh(-1) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_DIVBYZERO)) std::cout << " FE_DIVBYZERO raised\n"; }
Possible output:
atanh(0) = 0 atanh(-0) = -0 atanh(0.9) = 1.47222 atanh(-1) = -inf errno == ERANGE: Numerical result out of range FE_DIVBYZERO raised
(C++11)(C++11)(C++11) | computes the inverse hyperbolic sine (\({\small\operatorname{arsinh}{x} }\)arsinh(x)) (function) |
(C++11)(C++11)(C++11) | computes the inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x} }\)arcosh(x)) (function) |
(C++11)(C++11) | computes hyperbolic tangent (\({\small\tanh{x} }\)tanh(x)) (function) |
(C++11) | computes area hyperbolic tangent of a complex number (\({\small\operatorname{artanh}{z} }\)artanh(z)) (function template) |
C documentation for atanh |
Weisstein, Eric W. "Inverse Hyperbolic Tangent." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/atanh