Defined in header <cmath> | ||
---|---|---|
(1) | ||
float erfc ( float num ); double erfc ( double num ); long double erfc ( long double num ); | (until C++23) | |
/* floating-point-type */ erfc ( /* floating-point-type */ num ); | (since C++23) (constexpr since C++26) | |
float erfcf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double erfcl( long double num ); | (3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double erfc ( Integer num ); | (A) | (constexpr since C++26) |
num
, that is 1.0 - std::erf(num)
, but without loss of precision for large num
. The library provides overloads of std::erfc
for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
double | (since C++11) |
num | - | floating-point or integer value |
num
, that is \(\frac{2}{\sqrt{\pi} }\int_{num}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)2/√π∫∞If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
For the IEEE-compatible type double, underflow is guaranteed if num > 26.55
.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::erfc(num)
has the same effect as std::erfc(static_cast<double>(num))
.
#include <cmath> #include <iomanip> #include <iostream> double normalCDF(double x) // Phi(-∞, x) aka N(x) { return std::erfc(-x / std::sqrt(2)) / 2; } int main() { std::cout << "normal cumulative distribution function:\n" << std::fixed << std::setprecision(2); for (double n = 0; n < 1; n += 0.1) std::cout << "normalCDF(" << n << ") = " << 100 * normalCDF(n) << "%\n"; std::cout << "special values:\n" << "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n' << "erfc(Inf) = " << std::erfc(INFINITY) << '\n'; }
Output:
normal cumulative distribution function: normalCDF(0.00) = 50.00% normalCDF(0.10) = 53.98% normalCDF(0.20) = 57.93% normalCDF(0.30) = 61.79% normalCDF(0.40) = 65.54% normalCDF(0.50) = 69.15% normalCDF(0.60) = 72.57% normalCDF(0.70) = 75.80% normalCDF(0.80) = 78.81% normalCDF(0.90) = 81.59% normalCDF(1.00) = 84.13% special values: erfc(-Inf) = 2.00 erfc(Inf) = 0.00
(C++11)(C++11)(C++11) | error function (function) |
C documentation for erfc |
Weisstein, Eric W. "Erfc." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/erfc