Defined in header <cmath> | ||
---|---|---|
(1) | ||
float exp ( float num ); double exp ( double num ); long double exp ( long double num ); | (until C++23) | |
/* floating-point-type */ exp ( /* floating-point-type */ num ); | (since C++23) (constexpr since C++26) | |
float expf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double expl( long double num ); | (3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double exp ( Integer num ); | (A) | (constexpr since C++26) |
2.7182818...
double | (since C++11) |
num | - | floating-point or integer value |
If no errors occur, the base-e exponential of num
(enum
) is returned.
If a range error due to overflow occurs, +HUGE_VAL
, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
For IEEE-compatible type double, overflow is guaranteed if 709.8 < num, and underflow is guaranteed if num < -708.4.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::exp(num)
has the same effect as std::exp(static_cast<double>(num))
.
#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iomanip> #include <iostream> #include <numbers> // #pragma STDC FENV_ACCESS ON consteval double approx_e() { long double e {1.0}; for (auto fac {1ull}, n{1llu}; n != 18; ++n, fac *= n) e += 1.0 / fac; return e; } int main() { std::cout << std::setprecision(16) << "exp(1) = e¹ = " << std::exp(1) << '\n' << "numbers::e = " << std::numbers::e << '\n' << "approx_e = " << approx_e() << '\n' << "FV of $100, continuously compounded at 3% for 1 year = " << std::setprecision(6) << 100 * std::exp(0.03) << '\n'; // special values std::cout << "exp(-0) = " << std::exp(-0.0) << '\n' << "exp(-Inf) = " << std::exp(-INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "exp(710) = " << std::exp(710) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
exp(1) = e¹ = 2.718281828459045 numbers::e = 2.718281828459045 approx_e = 2.718281828459045 FV of $100, continuously compounded at 3% for 1 year = 103.045 exp(-0) = 1 exp(-Inf) = 0 exp(710) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised
(C++11)(C++11)(C++11) | returns 2 raised to the given power (\({\small 2^x}\)2x) (function) |
(C++11)(C++11)(C++11) | returns e raised to the given power, minus one (\({\small e^x-1}\)ex-1) (function) |
(C++11)(C++11) | computes natural (base e) logarithm (\({\small \ln{x} }\)ln(x)) (function) |
complex base e exponential (function template) |
|
applies the function std::exp to each element of valarray (function template) |
|
C documentation for exp |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/exp