Defined in header <cmath> | ||
|---|---|---|
| (1) | ||
float fmod ( float x, float y ); double fmod ( double x, double y ); long double fmod ( long double x, long double y ); | (until C++23) | |
constexpr /* floating-point-type */
fmod ( /* floating-point-type */ x,
/* floating-point-type */ y );
| (since C++23) | |
float fmodf( float x, float y ); | (2) | (since C++11) (constexpr since C++23) |
long double fmodl( long double x, long double y ); | (3) | (since C++11) (constexpr since C++23) |
| Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double fmod ( Integer x, Integer y ); | (A) | (constexpr since C++23) |
x / y. The library provides overloads of std::fmod for all cv-unqualified floating-point types as the type of the parameters. (since C++23)
double | (since C++11) |
The floating-point remainder of the division operation x / y calculated by this function is exactly the value x - rem * y, where rem is x / y with its fractional part truncated.
The returned value has the same sign as x and is less than y in magnitude.
| x, y | - | floating-point or integer values |
If successful, returns the floating-point remainder of the division x / y as defined above.
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling.
Domain error may occur if y is zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
x is ±0 and y is not zero, ±0 is returned x is ±∞ and y is not NaN, NaN is returned and FE_INVALID is raised y is ±0 and x is not NaN, NaN is returned and FE_INVALID is raised y is ±∞ and x is finite, x is returned. POSIX requires that a domain error occurs if x is infinite or y is zero.
std::fmod, but not std::remainder is useful for doing silent wrapping of floating-point types to unsigned integer types: (0.0 <= (y = std::fmod(std::rint(x), 65536.0)) ? y : 65536.0 + y) is in the range [-0.0 .. 65535.0], which corresponds to unsigned short, but std::remainder(std::rint(x), 65536.0 is in the range [-32767.0, +32768.0], which is outside of the range of signed short.
The double version of std::fmod behaves as if implemented as follows:
double fmod(double x, double y)
{
#pragma STDC FENV_ACCESS ON
double result = std::remainder(std::fabs(x), y = std::fabs(y));
if (std::signbit(result))
result += y;
return std::copysign(result, x);
}The expression x - std::trunc(x / y) * y may not equal std::fmod(x, y), when the rounding of x / y to initialize the argument of std::trunc loses too much precision (example: x = 30.508474576271183309, y = 6.1016949152542370172).
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
| (until C++23) |
| If If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. | (since C++23) |
#include <cfenv>
#include <cmath>
#include <iostream>
// #pragma STDC FENV_ACCESS ON
int main()
{
std::cout << "fmod(+5.1, +3.0) = " << std::fmod(5.1, 3) << '\n'
<< "fmod(-5.1, +3.0) = " << std::fmod(-5.1, 3) << '\n'
<< "fmod(+5.1, -3.0) = " << std::fmod(5.1, -3) << '\n'
<< "fmod(-5.1, -3.0) = " << std::fmod(-5.1, -3) << '\n';
// special values
std::cout << "fmod(+0.0, 1.0) = " << std::fmod(0, 1) << '\n'
<< "fmod(-0.0, 1.0) = " << std::fmod(-0.0, 1) << '\n'
<< "fmod(5.1, Inf) = " << std::fmod(5.1, INFINITY) << '\n';
// error handling
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "fmod(+5.1, 0) = " << std::fmod(5.1, 0) << '\n';
if (std::fetestexcept(FE_INVALID))
std::cout << " FE_INVALID raised\n";
}Possible output:
fmod(+5.1, +3.0) = 2.1
fmod(-5.1, +3.0) = -2.1
fmod(+5.1, -3.0) = 2.1
fmod(-5.1, -3.0) = -2.1
fmod(+0.0, 1.0) = 0
fmod(-0.0, 1.0) = -0
fmod(5.1, Inf) = 5.1
fmod(+5.1, 0) = -nan
FE_INVALID raised|
(C++11) | computes quotient and remainder of integer division (function) |
|
(C++11)(C++11)(C++11) | signed remainder of the division operation (function) |
|
(C++11)(C++11)(C++11) | signed remainder as well as the three last bits of the division operation (function) |
C documentation for fmod |
|
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/fmod