Defined in header <cmath> | ||
---|---|---|
(1) | ||
float lgamma ( float num ); double lgamma ( double num ); long double lgamma ( long double num ); | (until C++23) | |
/* floating-point-type */ lgamma ( /* floating-point-type */ num ); | (since C++23) (constexpr since C++26) | |
float lgammaf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double lgammal( long double num ); | (3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double lgamma ( Integer num ); | (A) | (constexpr since C++26) |
num
. The library provides overloads of std::lgamma
for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
double | (since C++11) |
num | - | floating-point or integer value |
If no errors occur, the value of the logarithm of the gamma function of num
, that is \(\log_{e}|{\int_0^\infty t^{num-1} e^{-t} \mathsf{d}t}|\)log
e|∫∞
0tnum-1
e-t dt|, is returned.
If a pole error occurs, +HUGE_VAL
, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to overflow occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
Errors are reported as specified in math_errhandling
.
If num
is zero or is an integer less than zero, a pole error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_DIVBYZERO
is raised. FE_DIVBYZERO
is raised. If num
is a natural number, std::lgamma(num)
is the logarithm of the factorial of num - 1
.
The POSIX version of lgamma
is not thread-safe: each execution of the function stores the sign of the gamma function of num
in the static external variable signgam
. Some implementations provide lgamma_r
, which takes a pointer to user-provided storage for singgam
as the second parameter, and is thread-safe.
There is a non-standard function named gamma
in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma
executes lgamma
, but 4.4BSD version of gamma
executes tgamma
.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::lgamma(num)
has the same effect as std::lgamma(static_cast<double>(num))
.
#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON const double pi = std::acos(-1); // or std::numbers::pi since C++20 int main() { std::cout << "lgamma(10) = " << std::lgamma(10) << ", log(9!) = " << std::log(std::tgamma(10)) << ", exp(lgamma(10)) = " << std::exp(std::lgamma(10)) << '\n' << "lgamma(0.5) = " << std::lgamma(0.5) << ", log(sqrt(pi)) = " << std::log(std::sqrt(pi)) << '\n'; // special values std::cout << "lgamma(1) = " << std::lgamma(1) << '\n' << "lgamma(+Inf) = " << std::lgamma(INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "lgamma(0) = " << std::lgamma(0) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_DIVBYZERO)) std::cout << " FE_DIVBYZERO raised\n"; }
Output:
lgamma(10) = 12.8018, log(9!) = 12.8018, exp(lgamma(10)) = 362880 lgamma(0.5) = 0.572365, log(sqrt(pi)) = 0.572365 lgamma(1) = 0 lgamma(+Inf) = inf lgamma(0) = inf errno == ERANGE: Numerical result out of range FE_DIVBYZERO raised
(C++11)(C++11)(C++11) | gamma function (function) |
C documentation for lgamma |
Weisstein, Eric W. "Log Gamma Function." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/lgamma