Defined in header `<cmath>` | ||
---|---|---|

float nextafter ( float from, float to ); float nextafterf( float from, float to ); | (1) | (since C++11) |

double nextafter ( double from, double to ); | (2) | (since C++11) |

long double nextafter ( long double from, long double to ); long double nextafterl( long double from, long double to ); | (3) | (since C++11) |

Promoted nextafter ( Arithmetic1 from, Arithmetic2 to ); | (4) | (since C++11) |

float nexttoward ( float from, long double to ); float nexttowardf( float from, long double to ); | (5) | (since C++11) |

double nexttoward ( double from, long double to ); | (6) | (since C++11) |

long double nexttoward ( long double from, long double to ); long double nexttowardl( long double from, long double to ); | (7) | (since C++11) |

double nexttoward ( IntegralType from, long double to ); | (8) | (since C++11) |

Returns the next representable value of `from`

in the direction of `to`

.

1-3) If

`from`

equals to `to`

, `to`

is returned.
5-7) If

`from`

equals to `to`

, `to`

is returned, converted from `long double`

to the return type of the function without loss of range or precision.
4) A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by (1-3). If any argument has integral type, it is cast to

`double`

. If any argument is `long double`

, then the return type `Promoted`

is also `long double`

, otherwise the return type is always `double`

.
8) A set of overloads or a function template accepting the

`from`

argument of any integral type. Equivalent to (6) (the argument is cast to `double`

).from, to | - | floating point values |

If no errors occur, the next representable value of `from`

in the direction of `to`

. is returned. If `from`

equals `to`

, then `to`

is returned.

If a range error due to overflow occurs, `±HUGE_VAL`

, `±HUGE_VALF`

, or `±HUGE_VALL`

is returned (with the same sign as `from`

).

If a range error occurs due to underflow, the correct result is returned.

Errors are reported as specified in `math_errhandling`

.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

- if
`from`

is finite, but the expected result is an infinity, raises`FE_INEXACT`

and`FE_OVERFLOW`

- if
`from`

does not equal`to`

and the result is subnormal or zero, raises`FE_INEXACT`

and`FE_UNDERFLOW`

- in any case, the returned value is independent of the current rounding mode
- if either
`from`

or`to`

is NaN, NaN is returned

POSIX specifies that the overflow and the underflow conditions are range errors (errno may be set).

IEC 60559 recommends that `from`

is returned whenever `from==to`

. These functions return `to`

instead, which makes the behavior around zero consistent: `std::nextafter(-0.0, +0.0)`

returns `+0.0`

and `std::nextafter(+0.0, -0.0)`

returns `–0.0`

.

#include <cmath> #include <iomanip> #include <iostream> #include <cfloat> #include <cfenv> int main() { float from1 = 0, to1 = std::nextafter(from1, 1.f); std::cout << "The next representable float after " << std::setprecision(20) << from1 << " is " << to1 << std::hexfloat << " (" << to1 << ")\n" << std::defaultfloat; float from2 = 1, to2 = std::nextafter(from2, 2.f); std::cout << "The next representable float after " << from2 << " is " << to2 << std::hexfloat << " (" << to2 << ")\n" << std::defaultfloat; double from3 = std::nextafter(0.1, 0), to3 = 0.1; std::cout << "The number 0.1 lies between two valid doubles:\n" << std::setprecision(56) << " " << from3 << std::hexfloat << " (" << from3 << ')' << std::defaultfloat << "\nand " << to3 << std::hexfloat << " (" << to3 << ")\n" << std::defaultfloat << std::setprecision(20); // difference between nextafter and nexttoward: long double dir = std::nextafter(from1, 1.0L); // first subnormal long double float x = nextafter(from1, dir); // first converts dir to float, giving 0 std::cout << "With nextafter, next float after " << from1 << " is " << x << '\n'; x = std::nexttoward(from1, dir); std::cout << "With nexttoward, next float after " << from1 << " is " << x << '\n'; // special values { #pragma STDC FENV_ACCESS ON std::feclearexcept(FE_ALL_EXCEPT); double from4 = DBL_MAX, to4 = std::nextafter(from4, INFINITY); std::cout << "The next representable double after " << std::setprecision(6) << from4 << std::hexfloat << " (" << from4 << ')' << std::defaultfloat << " is " << to4 << std::hexfloat << " (" << to4 << ")\n" << std::defaultfloat; if(std::fetestexcept(FE_OVERFLOW)) std::cout << " raised FE_OVERFLOW\n"; if(std::fetestexcept(FE_INEXACT)) std::cout << " raised FE_INEXACT\n"; } // end FENV_ACCESS block float from5 = 0.0, to5 = std::nextafter(from5, -0.0); std::cout << "std::nextafter(+0.0, -0.0) gives " << std::fixed << to5 << '\n'; }

Output:

The next representable float after 0 is 1.4012984643248170709e-45 (0x1p-149) The next representable float after 1 is 1.0000001192092895508 (0x1.000002p+0) The number 0.1 lies between two valid doubles: 0.09999999999999999167332731531132594682276248931884765625 (0x1.9999999999999p-4) and 0.1000000000000000055511151231257827021181583404541015625 (0x1.999999999999ap-4) With nextafter, next float after 0 is 0 With nexttoward, next float after 0 is 1.4012984643248170709e-45 The next representable double after 1.79769e+308 (0x1.fffffffffffffp+1023) is inf (inf) raised FE_OVERFLOW raised FE_INEXACT std::nextafter(+0.0, -0.0) gives -0.000000

© cppreference.com

Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.

http://en.cppreference.com/w/cpp/numeric/math/nextafter