Defined in header <cmath> | ||
---|---|---|
(1) | ||
float sin ( float num ); double sin ( double num ); long double sin ( long double num ); | (until C++23) | |
/* floating-point-type */ sin ( /* floating-point-type */ num ); | (since C++23) (constexpr since C++26) | |
float sinf( float num ); | (2) | (since C++11) (constexpr since C++26) |
long double sinl( long double num ); | (3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) | ||
Defined in header <cmath> | ||
template< class Integer > double sin ( Integer num ); | (A) | (constexpr since C++26) |
num
(measured in radians). The library provides overloads of std::sin
for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
double | (since C++11) |
num | - | floating-point or integer value representing angle in radians |
If no errors occur, the sine of num
(sin(num)) in the range [-1, +1], is returned.
The result may have little or no significance if the magnitude of | (until C++11) |
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_INVALID
is raised The case where the argument is infinite is not specified to be a domain error in C (to which C++ defers), but it is defined as a domain error in POSIX.
POSIX also specifies that in case of underflow, num
is returned unmodified, and if that is not supported, an implementation-defined value no greater than DBL_MIN
, FLT_MIN
, and LDBL_MIN
is returned.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::sin(num)
has the same effect as std::sin(static_cast<double>(num))
.
#include <cerrno> #include <cfenv> #include <cmath> #include <iomanip> #include <iostream> // #pragma STDC FENV_ACCESS ON const double pi = std::acos(-1); // or std::numbers::pi since C++20 constexpr double your_sin(double x) { double sin {0}, pow {x}; for (auto fac {1LLU}, n {1ULL}; n != 20; fac *= ++n, pow *= x) if (n & 1) sin += (n & 2 ? -pow : pow) / fac; return sin; } int main() { std::cout << std::setprecision(10) << std::showpos << "Typical usage:\n" << "std::sin(pi/6) = " << std::sin(pi / 6) << '\n' << "your sin(pi/6) = " << your_sin(pi / 6) << '\n' << "std::sin(pi/2) = " << std::sin(pi / 2) << '\n' << "your sin(pi/2) = " << your_sin(pi / 2) << '\n' << "std::sin(-3*pi/4) = " << std::sin(-3 * pi / 4) << '\n' << "your sin(-3*pi/4) = " << your_sin(-3 * pi / 4) << '\n' << "Special values:\n" << "std::sin(+0) = " << std::sin(0.0) << '\n' << "std::sin(-0) = " << std::sin(-0.0) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "std::sin(INFINITY) = " << std::sin(INFINITY) << '\n'; if (std::fetestexcept(FE_INVALID)) std::cout << " FE_INVALID raised\n"; }
Possible output:
Typical usage: std::sin(pi/6) = +0.5 your sin(pi/6) = +0.5 std::sin(pi/2) = +1 your sin(pi/2) = +1 std::sin(-3*pi/4) = -0.7071067812 your sin(-3*pi/4) = -0.7071067812 Special values: std::sin(+0) = +0 std::sin(-0) = -0 std::sin(INFINITY) = -nan FE_INVALID raised
(C++11)(C++11) | computes cosine (\({\small\cos{x} }\)cos(x)) (function) |
(C++11)(C++11) | computes tangent (\({\small\tan{x} }\)tan(x)) (function) |
(C++11)(C++11) | computes arc sine (\({\small\arcsin{x} }\)arcsin(x)) (function) |
computes sine of a complex number (\({\small\sin{z} }\)sin(z)) (function template) |
|
applies the function std::sin to each element of valarray (function template) |
|
C documentation for sin |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/sin