Defined in header <random> | ||
---|---|---|
template< class RealType = double > class cauchy_distribution; | (since C++11) |
Produces random numbers according to a Cauchy distribution (also called Lorentz distribution): \({\small f(x;a,b)={(b\pi{[1+{(\frac{x-a}{b})}^{2}]} })}^{-1}\)f(x; a,b) =
⎛std::cauchy_distribution
satisfies all requirements of RandomNumberDistribution.
RealType | - | The result type generated by the generator. The effect is undefined if this is not one of float , double , or long double . |
Member type | Definition |
---|---|
result_type (C++11) | RealType |
param_type (C++11) | the type of the parameter set, see RandomNumberDistribution. |
(C++11) | constructs new distribution (public member function) |
(C++11) | resets the internal state of the distribution (public member function) |
Generation |
|
(C++11) | generates the next random number in the distribution (public member function) |
Characteristics |
|
(C++11) | returns the distribution parameters (public member function) |
(C++11) | gets or sets the distribution parameter object (public member function) |
(C++11) | returns the minimum potentially generated value (public member function) |
(C++11) | returns the maximum potentially generated value (public member function) |
(C++11)(C++11)(removed in C++20) | compares two distribution objects (function) |
(C++11) | performs stream input and output on pseudo-random number distribution (function template) |
#include <algorithm> #include <cmath> #include <iomanip> #include <iostream> #include <map> #include <random> #include <vector> template<int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq> void draw_vbars(Seq&& s, const bool DrawMinMax = true) { static_assert(0 < Height and 0 < BarWidth and 0 <= Padding and 0 <= Offset); auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; }; const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s)); std::vector<std::div_t> qr; for (typedef decltype(*std::cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), 8 * Height, (e - *min) / (*max - *min)), 8)); for (auto h {Height}; h-- > 0; cout_n('\n')) { cout_n(' ', Offset); for (auto dv : qr) { const auto q {dv.quot}, r {dv.rem}; unsigned char d[] {0xe2, 0x96, 0x88, 0}; // Full Block: '█' q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0; cout_n(d, BarWidth), cout_n(' ', Padding); } if (DrawMinMax && Height > 1) Height - 1 == h ? std::cout << "┬ " << *max: h ? std::cout << "│ " : std::cout << "┴ " << *min; } } int main() { std::random_device rd {}; std::mt19937 gen {rd()}; auto cauchy = [&gen](const float x0, const float 𝛾) { std::cauchy_distribution<float> d {x0 /* a */, 𝛾 /* b */}; const int norm = 1'00'00; const float cutoff = 0.005f; std::map<int, int> hist {}; for (int n = 0; n != norm; ++n) ++hist[std::round(d(gen))]; std::vector<float> bars; std::vector<int> indices; for (auto const& [n, p] : hist) if (float x = p * (1.0 / norm); cutoff < x) { bars.push_back(x); indices.push_back(n); } std::cout << "x₀ = " << x0 << ", 𝛾 = " << 𝛾 << ":\n"; draw_vbars<4,3>(bars); for (int n : indices) std::cout << std::setw(2) << n << " "; std::cout << "\n\n"; }; cauchy(/* x₀ = */ -2.0f, /* 𝛾 = */ 0.50f); cauchy(/* x₀ = */ +0.0f, /* 𝛾 = */ 1.25f); }
Possible output:
x₀ = -2, 𝛾 = 0.5: ███ ┬ 0.5006 ███ │ ▂▂▂ ███ ▁▁▁ │ ▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ███ ███ ███ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0076 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 x₀ = 0, 𝛾 = 1.25: ███ ┬ 0.2539 ▅▅▅ ███ ▃▃▃ │ ▁▁▁ ███ ███ ███ ▁▁▁ │ ▁▁▁ ▁▁▁ ▁▁▁ ▁▁▁ ▃▃▃ ▅▅▅ ███ ███ ███ ███ ███ ▅▅▅ ▃▃▃ ▂▂▂ ▁▁▁ ▁▁▁ ▁▁▁ ┴ 0.0058 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 9
Weisstein, Eric W. "Cauchy Distribution." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/random/cauchy_distribution