Defined in header <random> | ||
---|---|---|
template< class RealType = double > class weibull_distribution; | (since C++11) |
The weibull_distribution
meets the requirements of a RandomNumberDistribution and produces random numbers according to the Weibull distribution: \(\small{f(x;a,b)=\frac{a}{b}{(\frac{x}{b})}^{a-1}\exp{(-{(\frac{x}{b})}^{a})} }\)f(x;a,b) =
a is the shape parameter and b the scale parameter.
std::weibull_distribution
satisfies RandomNumberDistribution.
RealType | - | The result type generated by the generator. The effect is undefined if this is not one of float , double , or long double . |
Member type | Definition |
---|---|
result_type (C++11) | RealType |
param_type (C++11) | the type of the parameter set, see RandomNumberDistribution. |
(C++11) | constructs new distribution (public member function) |
(C++11) | resets the internal state of the distribution (public member function) |
Generation |
|
(C++11) | generates the next random number in the distribution (public member function) |
Characteristics |
|
(C++11) | returns the distribution parameters (public member function) |
(C++11) | gets or sets the distribution parameter object (public member function) |
(C++11) | returns the minimum potentially generated value (public member function) |
(C++11) | returns the maximum potentially generated value (public member function) |
(C++11)(C++11)(removed in C++20) | compares two distribution objects (function) |
(C++11) | performs stream input and output on pseudo-random number distribution (function template) |
#include <cmath> #include <iomanip> #include <iostream> #include <map> #include <random> #include <string> int main() { std::random_device rd; std::mt19937 gen(rd()); std::weibull_distribution<> d; std::map<int, int> hist; for (int n = 0; n != 10000; ++n) ++hist[std::round(d(gen))]; std::cout << std::fixed << std::setprecision(1) << std::hex; for (auto [x, y]: hist) std::cout << x << ' ' << std::string(y / 200, '*') << '\n'; }
Possible output:
0 ******************* 1 ******************* 2 ****** 3 ** 4 5 6 7 8
1. | Weisstein, Eric W. "Weibull Distribution." From MathWorld — A Wolfram Web Resource. |
2. | Weibull distribution — From Wikipedia. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/random/weibull_distribution