Defined in header <cmath> | ||
---|---|---|
(1) | ||
float legendre ( unsigned int n, float x ); double legendre ( unsigned int n, double x ); long double legendre ( unsigned int n, long double x ); | (since C++17) (until C++23) | |
/* floating-point-type */ legendre( unsigned int n, /* floating-point-type */ x ); | (since C++23) | |
float legendref( unsigned int n, float x ); | (2) | (since C++17) |
long double legendrel( unsigned int n, long double x ); | (3) | (since C++17) |
Additional overloads | ||
Defined in header <cmath> | ||
template< class Integer > double legendre ( unsigned int n, Integer x ); | (A) | (since C++17) |
n
and argument x
. The library provides overloads of std::legendre
for all cv-unqualified floating-point types as the type of the parameter x
. (since C++23)
double
n | - | the degree of the polynomial |
x | - | the argument, a floating-point or integer value |
n
unassociated Legendre polynomial of x
, that is \(\mathsf{P}_n(x) = \frac{1}{2^n n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2-1)^n \)1/2nn!dn/dxn(x2Errors may be reported as specified in math_errhandling
.
n
is greater or equal than 128, the behavior is implementation-defined Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The first few Legendre polynomials are:
Function | Polynomial |
---|---|
legendre(0, x) | 1 |
legendre(1, x) | x |
legendre(2, x) | 1/2(3x2 - 1) |
legendre(3, x) | 1/2(5x3 - 3x) |
legendre(4, x) | 1/8(35x4 - 30x2 + 3) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num
of integer type, std::legendre(int_num, num)
has the same effect as std::legendre(int_num, static_cast<double>(num))
.
#include <cmath> #include <iostream> double P3(double x) { return 0.5 * (5 * std::pow(x, 3) - 3 * x); } double P4(double x) { return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3); } int main() { // spot-checks std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n' << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n'; }
Output:
-0.335938=-0.335938 0.157715=0.157715
(C++17)(C++17)(C++17) | Laguerre polynomials (function) |
(C++17)(C++17)(C++17) | Hermite polynomials (function) |
Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/special_functions/legendre