double laguerre( unsigned int n, double x ); float laguerre( unsigned int n, float x ); long double laguerre( unsigned int n, long double x ); float laguerref( unsigned int n, float x ); long double laguerrel( unsigned int n, long double x ); | (1) | (since C++17) |
double laguerre( unsigned int n, IntegralType x ); | (2) | (since C++17) |
double.| n | - | the degree of the polymonial, a value of unsigned integer type |
| x | - | the argument, a value of a floating-point or integral type |
x, that is | ex |
| n! |
| dn |
| dxn |
Errors may be reported as specified in math_errhandling.
x is negative, a domain error may occur n is greater or equal than 128, the behavior is implementation-defined Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
The Laguerre polynomials are the polynomial solutions of the equation xy,,
+(1-x)y,
+ny = 0.
The first few are:
| 1 |
| 2 |
| 1 |
| 6 |
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double L1(double x) { return -x + 1; }
double L2(double x) { return 0.5*(x*x-4*x+2); }
int main()
{
// spot-checks
std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5) << '\n'
<< std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n';
}Output:
0.5=0.5 0.125=0.125
|
(C++17)(C++17)(C++17) | associated Laguerre polynomials (function) |
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/laguerre