A container that allows accessing elements via a numeric index.
Indexing starts at 0
. A negative index is assumed to be relative to the end of the container: -1
indicates the last element, -2
is the next to last element, and so on.
Types including this module are typically Array
-like types.
Returns the element at the given index.
Returns the element at the given index.
By using binary search, returns the first element for which the passed block returns true
.
By using binary search, returns the index of the first element for which the passed block returns true
.
Traverses the depth of a structure and returns the value, otherwise raises IndexError
.
Traverses the depth of a structure and returns the value.
Returns an Iterator
for the elements of self
.
Calls the given block once for all elements at indices within the given range
, passing each element as a parameter.
Calls the given block once for each element in self
, passing that element as a parameter.
Calls the given block once for count
number of elements in self
starting from index start
, passing each element as a parameter.
Calls the given block once for count
number of indices in self
starting from index start
, passing each index as a parameter.
Calls the given block once for each index in self
, passing that index as a parameter.
Returns an Iterator
for each index in self
.
Returns true
if self
is empty, false
otherwise.
Determines if self
equals other according to a comparison done by the given block.
Returns the value at the index given by index, or when not found the value given by default.
Returns the element at the given index, if in bounds, otherwise executes the given block with the index and returns its value.
:inherited:
Returns the index of the first appearance of value in self
starting from the given offset, or nil
if the value is not in self
.
Returns the index of the first object in self
for which the block returns true
, starting from the given offset, or nil
if no match is found.
Optimized version of Enumerable#join
that performs better when all of the elements in this indexable are strings: the total string bytesize to return can be computed before creating the final string, which performs better because there's no need to do reallocations.
Returns the last element of self
if it's not empty, or raises IndexError
.
Returns the last element of self
if it's not empty, or the given block's value.
Returns the last element of self
if it's not empty, or nil
.
Same as #each
, but works in reverse.
Returns an Iterator
over the elements of self
in reverse order.
Returns the index of the last appearance of value in self
, or nil
if the value is not in self
.
Returns the index of the first object in self
for which the block returns true
, starting from the last object, or nil
if no match is found.
Returns a random element from self
, using the given random number generator.
Returns the number of elements in this container.
Returns an Array
with all the elements in the collection.
Returns the element at the given index, without doing any bounds check.
Returns a Tuple
populated with the elements at the given indexes.
Enumerable(T)
Iterable(T)
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array. Raises IndexError
if trying to access an element outside the array's range.
ary = ['a', 'b', 'c'] ary[0] # => 'a' ary[2] # => 'c' ary[-1] # => 'c' ary[-2] # => 'b' ary[3] # raises IndexError ary[-4] # raises IndexError
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array. Returns nil
if trying to access an element outside the array's range.
ary = ['a', 'b', 'c'] ary[0]? # => 'a' ary[2]? # => 'c' ary[-1]? # => 'c' ary[-2]? # => 'b' ary[3]? # nil ary[-4]? # nil
By using binary search, returns the first element for which the passed block returns true
.
If the block returns false
, the finding element exists behind. If the block returns true
, the finding element is itself or exists infront.
Binary search needs sorted array, so self
has to be sorted.
Returns nil
if the block didn't return true
for any element.
[2, 5, 7, 10].bsearch { |x| x >= 4 } # => 5 [2, 5, 7, 10].bsearch { |x| x > 10 } # => nil
By using binary search, returns the index of the first element for which the passed block returns true
.
If the block returns false
, the finding element exists behind. If the block returns true
, the finding element is itself or exists infront.
Binary search needs sorted array, so self
has to be sorted.
Returns nil
if the block didn't return true
for any element.
[2, 5, 7, 10].bsearch_index { |x, i| x >= 4 } # => 1 [2, 5, 7, 10].bsearch_index { |x, i| x > 10 } # => nil
Traverses the depth of a structure and returns the value, otherwise raises IndexError
.
ary = [{1, 2, 3, {4, 5, 6}}] ary.dig(0, 3, 2) # => 6 ary.dig(0, 3, 3) # raises IndexError
Traverses the depth of a structure and returns the value. Returns nil
if not found.
ary = [{1, 2, 3, {4, 5, 6}}] ary.dig?(0, 3, 2) # => 6 ary.dig?(0, 3, 3) # => nil
Returns an Iterator
for the elements of self
.
a = ["a", "b", "c"] iter = a.each iter.next # => "a" iter.next # => "b"
The returned iterator keeps a reference to self
: if the array changes, the returned values of the iterator change as well.
Calls the given block once for all elements at indices within the given range
, passing each element as a parameter.
Raises IndexError
if the starting index is out of range.
array = ["a", "b", "c", "d", "e"] array.each(within: 1..3) { |x| print x, " -- " }
produces:
b -- c -- d --
Calls the given block once for each element in self
, passing that element as a parameter.
a = ["a", "b", "c"] a.each { |x| print x, " -- " }
produces:
a -- b -- c --
Calls the given block once for count
number of elements in self
starting from index start
, passing each element as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError
if the starting index is out of range. Raises ArgumentError
if count
is a negative number.
array = ["a", "b", "c", "d", "e"] array.each(start: 1, count: 3) { |x| print x, " -- " }
produces:
b -- c -- d --
Calls the given block once for count
number of indices in self
starting from index start
, passing each index as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError
if the starting index is out of range. Raises ArgumentError
if count
is a negative number.
array = ["a", "b", "c", "d", "e"] array.each_index(start: -3, count: 2) { |x| print x, " -- " }
produces:
2 -- 3 --
Calls the given block once for each index in self
, passing that index as a parameter.
a = ["a", "b", "c"] a.each_index { |x| print x, " -- " }
produces:
0 -- 1 -- 2 --
Returns an Iterator
for each index in self
.
a = ["a", "b", "c"] iter = a.each_index iter.next # => 0 iter.next # => 1
The returned iterator keeps a reference to self
. If the array changes, the returned values of the iterator will change as well.
Returns true
if self
is empty, false
otherwise.
([] of Int32).empty? # => true ([1]).empty? # => false
Determines if self
equals other according to a comparison done by the given block.
If self
's size is the same as other's size, this method yields elements from self
and other in tandem: if the block returns true for all of them, this method returns true
. Otherwise it returns false
.
a = [1, 2, 3] b = ["a", "ab", "abc"] a.equals?(b) { |x, y| x == y.size } # => true a.equals?(b) { |x, y| x == y } # => false
Returns the value at the index given by index, or when not found the value given by default.
a = [:foo, :bar] a.fetch(0, :default_value) # => :foo a.fetch(2, :default_value) # => :default_value
Returns the element at the given index, if in bounds, otherwise executes the given block with the index and returns its value.
a = [:foo, :bar] a.fetch(0) { :default_value } # => :foo a.fetch(2) { :default_value } # => :default_value a.fetch(2) { |index| index * 3 } # => 6
:inherited:
Returns the index of the first appearance of value in self
starting from the given offset, or nil
if the value is not in self
.
[1, 2, 3, 1, 2, 3].index(2, offset: 2) # => 4
Returns the index of the first object in self
for which the block returns true
, starting from the given offset, or nil
if no match is found.
[1, 2, 3, 1, 2, 3].index(offset: 2) { |x| x < 2 } # => 3
Optimized version of Enumerable#join
that performs better when all of the elements in this indexable are strings: the total string bytesize to return can be computed before creating the final string, which performs better because there's no need to do reallocations.
Returns the last element of self
if it's not empty, or raises IndexError
.
([1, 2, 3]).last # => 3 ([] of Int32).last # raises IndexError
Returns the last element of self
if it's not empty, or the given block's value.
([1, 2, 3]).last { 4 } # => 3 ([] of Int32).last { 4 } # => 4
Returns the last element of self
if it's not empty, or nil
.
([1, 2, 3]).last? # => 3 ([] of Int32).last? # => nil
Returns the index of the last appearance of value in self
, or nil
if the value is not in self
.
If offset is given, it defines the position to end the search (elements beyond this point are ignored).
[1, 2, 3, 2, 3].rindex(2) # => 3 [1, 2, 3, 2, 3].rindex(2, offset: 2) # => 1
Returns the index of the first object in self
for which the block returns true
, starting from the last object, or nil
if no match is found.
If offset is given, the search starts from that index towards the first elements in self
.
[1, 2, 3, 2, 3].rindex { |x| x < 3 } # => 3 [1, 2, 3, 2, 3].rindex(offset: 2) { |x| x < 3 } # => 1
Returns a random element from self
, using the given random number generator. Raises IndexError
if self
is empty.
a = [1, 2, 3] a.sample # => 2 a.sample # => 1 a.sample(Random.new(1)) # => 3
Returns the number of elements in this container.
Returns an Array
with all the elements in the collection.
{1, 2, 3}.to_a # => [1, 2, 3]
Returns the element at the given index, without doing any bounds check.
Indexable
makes sure to invoke this method with index in 0...size
, so converting negative indices to positive ones is not needed here.
Clients never invoke this method directly. Instead, they access elements with #[](index)
and #[]?(index)
.
This method should only be directly invoked if you are absolutely sure the index is in bounds, to avoid a bounds check for a small boost of performance.
Returns a Tuple
populated with the elements at the given indexes. Raises IndexError
if any index is invalid.
["a", "b", "c", "d"].values_at(0, 2) # => {"a", "c"}
© 2012–2020 Manas Technology Solutions.
Licensed under the Apache License, Version 2.0.
https://crystal-lang.org/api/0.35.1/Indexable.html