This module contains a collection of bit-level operations.
Scans the bits in v starting with bit 0, looking for the first set bit.
assert(bsf(0x21) == 0); assert(bsf(ulong.max << 39) == 39);
Scans the bits in v from the most significant bit to the least significant bit, looking for the first set bit.
assert(bsr(0x21) == 5); assert(bsr((ulong.max >> 15) - 1) == 48);
Tests the bit. (No longer an intrisic - the compiler recognizes the patterns in the body.)
size_t[2] array; array[0] = 2; array[1] = 0x100; assert(bt(array.ptr, 1)); assert(array[0] == 2); assert(array[1] == 0x100);
Tests and complements the bit.
Tests and resets (sets to 0) the bit.
Tests and sets the bit.
size_t* p
| a non-NULL pointer to an array of size_ts. |
size_t bitnum
| a bit number, starting with bit 0 of p[0], and progressing. It addresses bits like the expression: p[index / (size_t.sizeof*8)] & (1 << (index & ((size_t.sizeof*8) - 1))) |
size_t[2] array; array[0] = 2; array[1] = 0x100; assert(btc(array.ptr, 35) == 0); if (size_t.sizeof == 8) { assert(array[0] == 0x8_0000_0002); assert(array[1] == 0x100); } else { assert(array[0] == 2); assert(array[1] == 0x108); } assert(btc(array.ptr, 35)); assert(array[0] == 2); assert(array[1] == 0x100); assert(bts(array.ptr, 35) == 0); if (size_t.sizeof == 8) { assert(array[0] == 0x8_0000_0002); assert(array[1] == 0x100); } else { assert(array[0] == 2); assert(array[1] == 0x108); } assert(btr(array.ptr, 35)); assert(array[0] == 2); assert(array[1] == 0x100);
Range over bit set. Each element is the bit number that is set.
This is more efficient than testing each bit in a sparsely populated bit set. Note that the first bit in the bit set would be bit 0.
import core.stdc.stdlib : malloc, free; import core.stdc.string : memset; // initialize a bit array enum nBytes = (100 + BitRange.bitsPerWord - 1) / 8; size_t *bitArr = cast(size_t *)malloc(nBytes); scope(exit) free(bitArr); memset(bitArr, 0, nBytes); // set some bits bts(bitArr, 48); bts(bitArr, 24); bts(bitArr, 95); bts(bitArr, 78); enum sum = 48 + 24 + 95 + 78; // iterate size_t testSum; size_t nBits; foreach (b; BitRange(bitArr, 100)) { testSum += b; ++nBits; } assert(testSum == sum); assert(nBits == 4);
Number of bits in each size_t
Construct a BitRange.
const(size_t)* bitarr
| The array of bits to iterate over |
size_t numBits
| The total number of valid bits in the given bit array |
Range functions
Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3 becomes byte 0.
Swaps bytes in an 8 byte ulong end-to-end, i.e. byte 0 becomes byte 7, byte 1 becomes byte 6, etc.
Reads I/O port at port_address.
Writes and returns value to I/O port at port_address.
Calculates the number of set bits in an integer.
Calculates the number of set bits in an integer using the X86 SSE4 POPCNT instruction. POPCNT is not available on all X86 CPUs.
Read/write value from/to the memory location indicated by ptr.
These functions are recognized by the compiler, and calls to them are guaranteed to not be removed (as dead assignment elimination or presumed to have no effect) or reordered in the same thread.
These reordering guarantees are only made with regards to other operations done through these functions; the compiler is free to reorder regular loads/stores with regards to loads/stores done through these functions.
This is useful when dealing with memory-mapped I/O (MMIO) where a store can have an effect other than just writing a value, or where sequential loads with no intervening stores can retrieve different values from the same location due to external stores to the location.
These functions will, when possible, do the load/store as a single operation. In general, this is possible when the size of the operation is less than or equal to (void*).sizeof
, although some targets may support larger operations. If the load/store cannot be done as a single operation, multiple smaller operations will be used.
These are not to be conflated with atomic operations. They do not guarantee any atomicity. This may be provided by coincidence as a result of the instructions used on the target, but this should not be relied on for portable programs. Further, no memory fences are implied by these functions. They should not be used for communication between threads. They may be used to guarantee a write or read cycle occurs at a specified address.
Reverses the order of bits in a 32-bit integer.
Reverses the order of bits in a 64-bit integer.
Bitwise rotate value
left (rol
) or right (ror
) by count
bit positions.
ubyte a = 0b11110000U; ulong b = ~1UL; assert(rol(a, 1) == 0b11100001); assert(ror(a, 1) == 0b01111000); assert(rol(a, 3) == 0b10000111); assert(ror(a, 3) == 0b00011110); assert(rol(a, 0) == a); assert(ror(a, 0) == a); assert(rol(b, 63) == ~(1UL << 63)); assert(ror(b, 63) == ~2UL); assert(rol!3(a) == 0b10000111); assert(ror!3(a) == 0b00011110);
© 1999–2019 The D Language Foundation
Licensed under the Boost License 1.0.
https://dlang.org/phobos/core_bitop.html