typeofDeclaration:
FuncDeclaration
VarDeclarations
AliasDeclaration
AggregateDeclaration
EnumDeclaration
ImportDeclaration
ConditionalDeclaration
StaticForeachDeclaration
StaticAssert
VarDeclarations:
StorageClassesopt BasicType Declarators ;
AutoDeclaration
Declarators:
DeclaratorInitializer
DeclaratorInitializer , DeclaratorIdentifierList
DeclaratorInitializer:
VarDeclarator
VarDeclarator TemplateParametersopt = Initializer
AltDeclarator
AltDeclarator = Initializer
DeclaratorIdentifierList:
DeclaratorIdentifier
DeclaratorIdentifier , DeclaratorIdentifierList
DeclaratorIdentifier:
VarDeclaratorIdentifier
AltDeclaratorIdentifier
VarDeclaratorIdentifier:
Identifier
Identifier TemplateParametersopt = Initializer
AltDeclaratorIdentifier:
BasicType2 Identifier AltDeclaratorSuffixesopt
BasicType2 Identifier AltDeclaratorSuffixesopt = Initializer
BasicType2opt Identifier AltDeclaratorSuffixes
BasicType2opt Identifier AltDeclaratorSuffixes = Initializer
Declarator:
VarDeclarator
AltDeclarator
VarDeclarator:
BasicType2opt Identifier
AltDeclarator:
BasicType2opt Identifier AltDeclaratorSuffixes
BasicType2opt ( AltDeclaratorX )
BasicType2opt ( AltDeclaratorX ) AltFuncDeclaratorSuffix
BasicType2opt ( AltDeclaratorX ) AltDeclaratorSuffixes
AltDeclaratorX:
BasicType2opt Identifier
BasicType2opt Identifier AltFuncDeclaratorSuffix
AltDeclarator
AltDeclaratorSuffixes:
AltDeclaratorSuffix
AltDeclaratorSuffix AltDeclaratorSuffixes
AltDeclaratorSuffix:
[ ]
[ AssignExpression ]
[ Type ]
AltFuncDeclaratorSuffix:
Parameters MemberFunctionAttributesopt
Type:
TypeCtorsopt BasicType BasicType2opt
TypeCtors:
TypeCtor
TypeCtor TypeCtors
TypeCtor:
const
immutable
inout
shared
BasicType:
BasicTypeX
. IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList
TypeCtor ( Type )
Vector
Traits
MixinType
Vector:
__vector ( VectorBaseType )
VectorBaseType:
Type
BasicTypeX:
bool
byte
ubyte
short
ushort
int
uint
long
ulong
cent
ucent
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void
BasicType2:
BasicType2X BasicType2opt
BasicType2X:
*
[ ]
[ AssignExpression ]
[ AssignExpression .. AssignExpression ]
[ Type ]
delegate Parameters MemberFunctionAttributesopt
function Parameters FunctionAttributesopt
IdentifierList:
Identifier
Identifier . IdentifierList
TemplateInstance
TemplateInstance . IdentifierList
Identifier [ AssignExpression ]
Identifier [ AssignExpression ]. IdentifierList
StorageClasses:
StorageClass
StorageClass StorageClasses
StorageClass:
LinkageAttribute
AlignAttribute
deprecated
enum
static
extern
abstract
final
override
synchronized
auto
scope
const
immutable
inout
shared
__gshared
Property
nothrow
pure
ref
Initializer:
VoidInitializer
NonVoidInitializer
NonVoidInitializer:
ExpInitializer
ArrayInitializer
StructInitializer
ExpInitializer:
AssignExpression
ArrayInitializer:
[ ArrayMemberInitializationsopt ]
ArrayMemberInitializations:
ArrayMemberInitialization
ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations
ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer
StructInitializer:
{ StructMemberInitializersopt }
StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer ,
StructMemberInitializer , StructMemberInitializers
StructMemberInitializer:
NonVoidInitializer
Identifier : NonVoidInitializer
Declaration syntax generally reads right to left:
int x; // x is an int int* x; // x is a pointer to int int** x; // x is a pointer to a pointer to int int[] x; // x is an array of ints int*[] x; // x is an array of pointers to ints int[]* x; // x is a pointer to an array of ints
Arrays read right to left as well:
int[3] x; // x is an array of 3 ints int[3][5] x; // x is an array of 5 arrays of 3 ints int[3]*[5] x; // x is an array of 5 pointers to arrays of 3 ints
Pointers to functions are declared using the function keyword:
int function(char) x; // x is a pointer to
// a function taking a char argument
// and returning an int
int function(char)[] x; // x is an array of
// pointers to functions
// taking a char argument
// and returning an int
C-style array, function pointer and pointer to array declarations are deprecated:
int x[3]; // x is an array of 3 ints
int x[3][5]; // x is an array of 3 arrays of 5 ints
int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints
int (*x)(char); // x is a pointer to a function taking a char argument
// and returning an int
int (*[] x)(char); // x is an array of pointers to functions
// taking a char argument and returning an int
In a declaration declaring multiple symbols, all the declarations must be of the same type:
int x,y; // x and y are ints int* x,y; // x and y are pointers to ints int x,*y; // error, multiple types int[] x,y; // x and y are arrays of ints int x[],y; // error, multiple types
AutoDeclaration:
StorageClasses AutoDeclarationX ;
AutoDeclarationX:
AutoDeclarationY
AutoDeclarationX , AutoDeclarationY
AutoDeclarationY:
Identifier TemplateParametersopt = Initializer
If a declaration starts with a StorageClass and has a NonVoidInitializer from which the type can be inferred, the type on the declaration can be omitted.
static x = 3; // x is type int
auto y = 4u; // y is type uint
auto s = "Apollo"; // s is type immutable(char)[]
class C { ... }
auto c = new C(); // c is a handle to an instance of class C
The NonVoidInitializer cannot contain forward references (this restriction may be removed in the future). The implicitly inferred type is statically bound to the declaration at compile time, not run time.
An ArrayLiteral is inferred to be a dynamic array type rather than a static array:
auto v = ["resistance", "is", "useless"]; // type is string[], not string[3]
AliasDeclaration:
alias StorageClassesopt BasicType Declarators ;
alias StorageClassesopt BasicType FuncDeclarator ;
alias AliasDeclarationX ;
AliasDeclarationX:
AliasDeclarationY
AliasDeclarationX , AliasDeclarationY
AliasDeclarationY:
Identifier TemplateParametersopt = StorageClassesopt Type
Identifier TemplateParametersopt = FunctionLiteral
Identifier TemplateParametersopt = StorageClassesopt BasicType Parameters MemberFunctionAttributesopt
AliasDeclarations create a symbol that is an alias for another type, and can be used anywhere that other type may appear.
alias myint = abc.Foo.bar;
Aliased types are semantically identical to the types they are aliased to. The debugger cannot distinguish between them, and there is no difference as far as function overloading is concerned. For example:
alias myint = int;
void foo(int x) { ... }
void foo(myint m) { ... } // error, multiply defined function foo
A symbol can be declared as an alias of another symbol. For example:
import planets;
alias myAlbedo = planets.albedo;
...
int len = myAlbedo("Saturn"); // actually calls planets.albedo()
The following alias declarations are valid:
template Foo2(T) { alias t = T; }
alias t1 = Foo2!(int);
alias t2 = Foo2!(int).t;
alias t3 = t1.t;
alias t4 = t2;
t1.t v1; // v1 is type int
t2 v2; // v2 is type int
t3 v3; // v3 is type int
t4 v4; // v4 is type int
alias Fun = int(string p);
int fun(string){return 0;}
static assert(is(typeof(fun) == Fun));
alias MemberFun1 = int() const;
alias MemberFun2 = const int();
// leading attributes apply to the func, not the return type
static assert(is(MemberFun1 == MemberFun2));
Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect references from one symbol to another:
version (Win32)
{
alias myfoo = win32.foo;
}
version (linux)
{
alias myfoo = linux.bar;
}
Aliasing can be used to import a symbol from an import into the current scope:
alias strlen = string.strlen;
Aliases can also import a set of overloaded functions, that can be overloaded with functions in the current scope:
class A
{
int foo(int a) { return 1; }
}
class B : A
{
int foo( int a, uint b ) { return 2; }
}
class C : B
{
int foo( int a ) { return 3; }
alias foo = B.foo;
}
class D : C
{
}
void test()
{
D b = new D();
int i;
i = b.foo(1, 2u); // calls B.foo
i = b.foo(1); // calls C.foo
}
Note: Type aliases can sometimes look indistinguishable from alias declarations:
alias abc = foo.bar; // is it a type or a symbol?
The distinction is made in the semantic analysis pass.
Aliases cannot be used for expressions:
struct S
{
static int i;
static int j;
}
alias a = S.i; // OK, `S.i` is a symbol
alias b = S.j; // OK. `S.j` is also a symbol
alias c = a + b; // illegal, `a + b` is an expression
a = 2; // sets `S.i` to `2`
b = 4; // sets `S.j` to `4`
Variable declarations with the storage class extern are not allocated storage within the module. They must be defined in some other object file with a matching name which is then linked in.
An extern declaration can optionally be followed by an extern linkage attribute. If there is no linkage attribute it defaults to extern(D):
// variable allocated and initialized in this module with C linkage extern(C) int foo; // variable allocated outside this module with C linkage // (e.g. in a statically linked C library or another module) extern extern(C) int bar;Best Practices:
typeofTypeof:
typeof ( Expression )
typeof ( return )
Typeof is a way to specify a type based on the type of an expression. For example:
void func(int i)
{
typeof(i) j; // j is of type int
typeof(3 + 6.0) x; // x is of type double
typeof(1)* p; // p is of type pointer to int
int[typeof(p)] a; // a is of type int[int*]
writefln("%d", typeof('c').sizeof); // prints 1
double c = cast(typeof(1.0))j; // cast j to double
}
Expression is not evaluated, just the type of it is generated:
void func()
{
int i = 1;
typeof(++i) j; // j is declared to be an int, i is not incremented
writefln("%d", i); // prints 1
}
Special cases:
typeof(this) will generate the type of what this would be in a non-static member function, even if not in a member function. typeof(super) will generate the type of what super would be in a non-static member function. typeof(return) will, when inside a function scope, give the return type of that function. class A { }
class B : A
{
typeof(this) x; // x is declared to be a B
typeof(super) y; // y is declared to be an A
}
struct C
{
static typeof(this) z; // z is declared to be a C
typeof(super) q; // error, no super struct for C
}
typeof(this) r; // error, no enclosing struct or class
If the expression is a Property Function, typeof gives its return type.
struct S
{
@property int foo() { return 1; }
}
typeof(S.foo) n; // n is declared to be an int
Best Practices: VoidInitializer:
void
Normally, variables are initialized either with an explicit Initializer or are set to the default value for the type of the variable. If the Initializer is void, however, the variable is not initialized. If its value is used before it is set, undefined program behavior will result.
void foo()
{
int x = void;
writeln(x); // will print garbage
}
Best Practices: The Initializer for a global or static variable must be evaluatable at compile time. Runtime initialization is done with static constructors.
Implementation Defined:Type qualifer and storage classes are distinct.
A type qualifier creates a derived type from an existing base type, and the resulting type may be used to create multiple instances of that type.
For example, the immutable type qualifier can be used to create variables of immutable type, such as:
immutable(int) x; // typeof(x) == immutable(int)
immutable(int)[] y; // typeof(y) == immutable(int)[]
// typeof(y[0]) == immutable(int)
// Type constructors create new types that can be aliased:
alias ImmutableInt = immutable(int);
ImmutableInt z; // typeof(z) == immutable(int)
A storage class, on the other hand, does not create a new type, but describes only the kind of storage used by the variable or function being declared. For example, a member function can be declared with the const storage class to indicate that it does not modify its implicit this argument:
struct S
{
int x;
int method() const
{
//x++; // Error: this method is const and cannot modify this.x
return x; // OK: we can still read this.x
}
}
Although some keywords can be used both as a type qualifier and a storage class, there are some storage classes that cannot be used to construct new types, such as ref:
// ref declares the parameter x to be passed by reference
void func(ref int x)
{
x++; // so modifications to x will be visible in the caller
}
void main()
{
auto x = 1;
func(x);
assert(x == 2);
// However, ref is not a type qualifier, so the following is illegal:
ref(int) y; // Error: ref is not a type qualifier.
}
Functions can also be declared as ref, meaning their return value is passed by reference:
ref int func2()
{
static int y = 0;
return y;
}
void main()
{
func2() = 2; // The return value of func2() can be modified.
assert(func2() == 2);
// However, the reference returned by func2() does not propagate to
// variables, because the 'ref' only applies to the return value itself,
// not to any subsequent variable created from it:
auto x = func2();
static assert(is(typeof(x) == int)); // N.B.: *not* ref(int);
// there is no such type as ref(int).
x++;
assert(x == 3);
assert(func2() == 2); // x is not a reference to what func2() returned; it
// does not inherit the ref storage class from func2().
}
Some keywords, such as const, can be used both as a type qualifier and a storage class. The distinction is determined by the syntax where it appears.
struct S
{
/* Is const here a type qualifier or a storage class?
* Is the return value const(int), or is this a const function that returns
* (mutable) int?
*/
const int* func() // a const function
{
++p; // error, this.p is const
return p; // error, cannot convert const(int)* to int*
}
const(int)* func() // a function returning a pointer to a const int
{
++p; // ok, this.p is mutable
return p; // ok, int* can be implicitly converted to const(int)*
}
int* p;
}
Best Practices: To avoid confusion, the type qualifier syntax with parentheses should be used for return types, and function storage classes should be written on the right-hand side of the declaration instead of the left-hand side where it may be visually confused with the return type: struct S
{
// Now it is clear that the 'const' here applies to the return type:
const(int) func1() { return 1; }
// And it is clear that the 'const' here applies to the function:
int func2() const { return 1; }
}
© 1999–2019 The D Language Foundation
Licensed under the Boost License 1.0.
https://dlang.org/spec/declaration.html