This module implements experimental additions/modifications to std.typecons.
Use this module to test out new functionality for std.typecons.wrap which allows for a struct to be wrapped against an interface; the implementation in std.typecons only allows for classes to use the wrap functionality.
Wrap src in an anonymous class implementing Targets.
wrap creates an internal wrapper class which implements the interfaces in Targets using the methods of src, then returns a GC-allocated instance of it.
Source can be either a class or a struct, but it must structurally conform with all the Targets interfaces; i.e. it must provide concrete methods with compatible signatures of those in Targets.
If Source is a struct then wrapping/unwrapping will create a copy; it is not possible to affect the original struct through the wrapper.
The returned object additionally supports unwrap.
Targets[0]. unwrap for examplesExtract object previously wrapped by wrap.
| Target | type of wrapped object |
Source src
| wrapper object returned by wrap
|
wrap and Target is a class std.conv.ConvException when attempting to extract a struct which is not the wrapped type wrapinterface Quack
{
int quack();
@property int height();
}
interface Flyer
{
@property int height();
}
class Duck : Quack
{
int quack() { return 1; }
@property int height() { return 10; }
}
class Human
{
int quack() { return 2; }
@property int height() { return 20; }
}
struct HumanStructure
{
int quack() { return 3; }
@property int height() { return 30; }
}
Duck d1 = new Duck();
Human h1 = new Human();
HumanStructure hs1;
interface Refreshable
{
int refresh();
}
// does not have structural conformance
static assert(!__traits(compiles, d1.wrap!Refreshable));
static assert(!__traits(compiles, h1.wrap!Refreshable));
static assert(!__traits(compiles, hs1.wrap!Refreshable));
// strict upcast
Quack qd = d1.wrap!Quack;
assert(qd is d1);
assert(qd.quack() == 1); // calls Duck.quack
// strict downcast
Duck d2 = qd.unwrap!Duck;
assert(d2 is d1);
// structural upcast
Quack qh = h1.wrap!Quack;
Quack qhs = hs1.wrap!Quack;
assert(qh.quack() == 2); // calls Human.quack
assert(qhs.quack() == 3); // calls HumanStructure.quack
// structural downcast
Human h2 = qh.unwrap!Human;
HumanStructure hs2 = qhs.unwrap!HumanStructure;
assert(h2 is h1);
assert(hs2 is hs1);
// structural upcast (two steps)
Quack qx = h1.wrap!Quack; // Human -> Quack
Quack qxs = hs1.wrap!Quack; // HumanStructure -> Quack
Flyer fx = qx.wrap!Flyer; // Quack -> Flyer
Flyer fxs = qxs.wrap!Flyer; // Quack -> Flyer
assert(fx.height == 20); // calls Human.height
assert(fxs.height == 30); // calls HumanStructure.height
// strucural downcast (two steps)
Quack qy = fx.unwrap!Quack; // Flyer -> Quack
Quack qys = fxs.unwrap!Quack; // Flyer -> Quack
Human hy = qy.unwrap!Human; // Quack -> Human
HumanStructure hys = qys.unwrap!HumanStructure; // Quack -> HumanStructure
assert(hy is h1);
assert(hys is hs1);
// strucural downcast (one step)
Human hz = fx.unwrap!Human; // Flyer -> Human
HumanStructure hzs = fxs.unwrap!HumanStructure; // Flyer -> HumanStructure
assert(hz is h1);
assert(hzs is hs1);
import std.traits : functionAttributes, FunctionAttribute;
interface A { int run(); }
interface B { int stop(); @property int status(); }
class X
{
int run() { return 1; }
int stop() { return 2; }
@property int status() { return 3; }
}
auto x = new X();
auto ab = x.wrap!(A, B);
A a = ab;
B b = ab;
writeln(a.run()); // 1
writeln(b.stop()); // 2
writeln(b.status); // 3
static assert(functionAttributes!(typeof(ab).status) & FunctionAttribute.property);
Type constructor for final (aka head-const) variables.
Final variables cannot be directly mutated or rebound, but references reached through the variable are typed with their original mutability. It is equivalent to final variables in D1 and Java, as well as readonly variables in C#.
When T is a const or immutable type, Final aliases to T.
Final can be used to create class references which cannot be rebound: static class A
{
int i;
this(int i) pure nothrow @nogc @safe
{
this.i = i;
}
}
auto a = makeFinal(new A(42));
writeln(a.i); // 42
//a = new A(24); // Reassignment is illegal,
a.i = 24; // But fields are still mutable.
writeln(a.i); // 24
Final can also be used to create read-only data fields without using transitive immutability: static class A
{
int i;
this(int i) pure nothrow @nogc @safe
{
this.i = i;
}
}
static class B
{
Final!A a;
this(A a) pure nothrow @nogc @safe
{
this.a = a; // Construction, thus allowed.
}
}
auto b = new B(new A(42));
writeln(b.a.i); // 42
// b.a = new A(24); // Reassignment is illegal,
b.a.i = 24; // but `a` is still mutable.
writeln(b.a.i); // 24
© 1999–2019 The D Language Foundation
Licensed under the Boost License 1.0.
https://dlang.org/phobos/std_experimental_typecons.html