These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield')) {'arr': [0, 1, 2]}
ArrayAgg
class ArrayAgg(expression, **extra)
[source]
Returns a list of values, including nulls, concatenated into an array.
BitAnd
class BitAnd(expression, **extra)
[source]
Returns an int
of the bitwise AND
of all non-null input values, or None
if all values are null.
BitOr
class BitOr(expression, **extra)
[source]
Returns an int
of the bitwise OR
of all non-null input values, or None
if all values are null.
BoolAnd
class BoolAnd(expression, **extra)
[source]
Returns True
, if all input values are true, None
if all values are null or if there are no values, otherwise False
.
BoolOr
class BoolOr(expression, **extra)
[source]
Returns True
if at least one input value is true, None
if all values are null or if there are no values, otherwise False
.
JSONBAgg
class JSONBAgg(expressions, **extra)
[source]
Returns the input values as a JSON
array. Requires PostgreSQL ≥ 9.5.
StringAgg
class StringAgg(expression, delimiter, distinct=False)
[source]
Returns the input values concatenated into a string, separated by the delimiter
string.
delimiter
Required argument. Needs to be a string.
distinct
An optional boolean argument that determines if concatenated values will be distinct. Defaults to False
.
y
and x
The arguments y
and x
for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Corr
class Corr(y, x)
[source]
Returns the correlation coefficient as a float
, or None
if there aren’t any matching rows.
CovarPop
class CovarPop(y, x, sample=False)
[source]
Returns the population covariance as a float
, or None
if there aren’t any matching rows.
Has one optional argument:
sample
By default CovarPop
returns the general population covariance. However, if sample=True
, the return value will be the sample population covariance.
RegrAvgX
class RegrAvgX(y, x)
[source]
Returns the average of the independent variable (sum(x)/N
) as a float
, or None
if there aren’t any matching rows.
RegrAvgY
class RegrAvgY(y, x)
[source]
Returns the average of the dependent variable (sum(y)/N
) as a float
, or None
if there aren’t any matching rows.
RegrCount
class RegrCount(y, x)
[source]
Returns an int
of the number of input rows in which both expressions are not null.
RegrIntercept
class RegrIntercept(y, x)
[source]
Returns the y-intercept of the least-squares-fit linear equation determined by the (x, y)
pairs as a float
, or None
if there aren’t any matching rows.
RegrR2
class RegrR2(y, x)
[source]
Returns the square of the correlation coefficient as a float
, or None
if there aren’t any matching rows.
RegrSlope
class RegrSlope(y, x)
[source]
Returns the slope of the least-squares-fit linear equation determined by the (x, y)
pairs as a float
, or None
if there aren’t any matching rows.
RegrSXX
class RegrSXX(y, x)
[source]
Returns sum(x^2) - sum(x)^2/N
(“sum of squares” of the independent variable) as a float
, or None
if there aren’t any matching rows.
RegrSXY
class RegrSXY(y, x)
[source]
Returns sum(x*y) - sum(x) * sum(y)/N
(“sum of products” of independent times dependent variable) as a float
, or None
if there aren’t any matching rows.
RegrSYY
class RegrSYY(y, x)
[source]
Returns sum(y^2) - sum(y)^2/N
(“sum of squares” of the dependent variable) as a float
, or None
if there aren’t any matching rows.
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 | |--------|--------|--------| | foo | 1 | 13 | | bar | 2 | (null) | | test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';')) {'result': 'foo;bar;test'} >>> TestModel.objects.aggregate(result=ArrayAgg('field2')) {'result': [1, 2, 3]} >>> TestModel.objects.aggregate(result=ArrayAgg('field1')) {'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2')) {'count': 2} >>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'), ... avgy=RegrAvgY(y='field3', x='field2')) {'avgx': 2, 'avgy': 13}
© Django Software Foundation and individual contributors
Licensed under the BSD License.
https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/aggregates/