These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
 ArrayAggclass ArrayAgg(expression, **extra) [source]
Returns a list of values, including nulls, concatenated into an array.
BitAndclass BitAnd(expression, **extra) [source]
Returns an int of the bitwise AND of all non-null input values, or None if all values are null.
BitOrclass BitOr(expression, **extra) [source]
Returns an int of the bitwise OR of all non-null input values, or None if all values are null.
BoolAndclass BoolAnd(expression, **extra) [source]
Returns True, if all input values are true, None if all values are null or if there are no values, otherwise False .
BoolOrclass BoolOr(expression, **extra) [source]
Returns True if at least one input value is true, None if all values are null or if there are no values, otherwise False.
JSONBAggclass JSONBAgg(expressions, **extra) [source]
Returns the input values as a JSON array. Requires PostgreSQL ≥ 9.5.
StringAggclass StringAgg(expression, delimiter, distinct=False) [source]
Returns the input values concatenated into a string, separated by the delimiter string.
delimiter Required argument. Needs to be a string.
distinct An optional boolean argument that determines if concatenated values will be distinct. Defaults to False.
y and x
The arguments y and x for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Corrclass Corr(y, x) [source]
Returns the correlation coefficient as a float, or None if there aren’t any matching rows.
CovarPopclass CovarPop(y, x, sample=False) [source]
Returns the population covariance as a float, or None if there aren’t any matching rows.
Has one optional argument:
sample By default CovarPop returns the general population covariance. However, if sample=True, the return value will be the sample population covariance.
RegrAvgXclass RegrAvgX(y, x) [source]
Returns the average of the independent variable (sum(x)/N) as a float, or None if there aren’t any matching rows.
RegrAvgYclass RegrAvgY(y, x) [source]
Returns the average of the dependent variable (sum(y)/N) as a float, or None if there aren’t any matching rows.
RegrCountclass RegrCount(y, x) [source]
Returns an int of the number of input rows in which both expressions are not null.
RegrInterceptclass RegrIntercept(y, x) [source]
Returns the y-intercept of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or None if there aren’t any matching rows.
RegrR2class RegrR2(y, x) [source]
Returns the square of the correlation coefficient as a float, or None if there aren’t any matching rows.
RegrSlopeclass RegrSlope(y, x) [source]
Returns the slope of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or None if there aren’t any matching rows.
RegrSXXclass RegrSXX(y, x) [source]
Returns sum(x^2) - sum(x)^2/N (“sum of squares” of the independent variable) as a float, or None if there aren’t any matching rows.
RegrSXYclass RegrSXY(y, x) [source]
Returns sum(x*y) - sum(x) * sum(y)/N (“sum of products” of independent times dependent variable) as a float, or None if there aren’t any matching rows.
RegrSYYclass RegrSYY(y, x) [source]
Returns sum(y^2) - sum(y)^2/N (“sum of squares” of the dependent variable) as a float, or None if there aren’t any matching rows.
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 | |--------|--------|--------| | foo | 1 | 13 | | bar | 2 | (null) | | test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
 The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
...                             avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
    © Django Software Foundation and individual contributors
Licensed under the BSD License.
    https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/aggregates/