Build an image from a Dockerfile
docker build [OPTIONS] PATH | URL | -
Name, shorthand | Default | Description |
--add-host | Add a custom host-to-IP mapping (host:ip) | |
--build-arg | Set build-time variables | |
--cache-from | Images to consider as cache sources | |
--cgroup-parent | Optional parent cgroup for the container | |
--compress | Compress the build context using gzip | |
--cpu-period | Limit the CPU CFS (Completely Fair Scheduler) period | |
--cpu-quota | Limit the CPU CFS (Completely Fair Scheduler) quota | |
--cpu-shares , -c | CPU shares (relative weight) | |
--cpuset-cpus | CPUs in which to allow execution (0-3, 0,1) | |
--cpuset-mems | MEMs in which to allow execution (0-3, 0,1) | |
--disable-content-trust | true | Skip image verification |
--file , -f | Name of the Dockerfile (Default is ‘PATH/Dockerfile’) | |
--force-rm | Always remove intermediate containers | |
--iidfile | Write the image ID to the file | |
--isolation | Container isolation technology | |
--label | Set metadata for an image | |
--memory , -m | Memory limit | |
--memory-swap | Swap limit equal to memory plus swap: ‘-1’ to enable unlimited swap | |
--network |
API 1.25+ Set the networking mode for the RUN instructions during build | |
--no-cache | Do not use cache when building the image | |
--output , -o |
API 1.40+ Output destination (format: type=local,dest=path) | |
--platform |
experimental (daemon)API 1.32+ Set platform if server is multi-platform capable | |
--progress | auto | Set type of progress output (auto, plain, tty). Use plain to show container output |
--pull | Always attempt to pull a newer version of the image | |
--quiet , -q | Suppress the build output and print image ID on success | |
--rm | true | Remove intermediate containers after a successful build |
--secret |
API 1.39+ Secret file to expose to the build (only if BuildKit enabled): id=mysecret,src=/local/secret | |
--security-opt | Security options | |
--shm-size | Size of /dev/shm | |
--squash |
experimental (daemon)API 1.25+ Squash newly built layers into a single new layer | |
--ssh |
API 1.39+ SSH agent socket or keys to expose to the build (only if BuildKit enabled) (format: default| | |
--stream |
experimental (daemon)API 1.31+ Stream attaches to server to negotiate build context | |
--tag , -t | Name and optionally a tag in the ‘name:tag’ format | |
--target | Set the target build stage to build. | |
--ulimit | Ulimit options |
Command | Description |
---|---|
docker | The base command for the Docker CLI. |
The docker build
command builds Docker images from a Dockerfile and a “context”. A build’s context is the set of files located in the specified PATH
or URL
. The build process can refer to any of the files in the context. For example, your build can use a COPY instruction to reference a file in the context.
The URL
parameter can refer to three kinds of resources: Git repositories, pre-packaged tarball contexts and plain text files.
When the URL
parameter points to the location of a Git repository, the repository acts as the build context. The system recursively fetches the repository and its submodules. The commit history is not preserved. A repository is first pulled into a temporary directory on your local host. After that succeeds, the directory is sent to the Docker daemon as the context. Local copy gives you the ability to access private repositories using local user credentials, VPN’s, and so forth.
Note: If the
URL
parameter contains a fragment the system will recursively clone the repository and its submodules using agit clone --recursive
command.
Git URLs accept context configuration in their fragment section, separated by a colon :
. The first part represents the reference that Git will check out, and can be either a branch, a tag, or a remote reference. The second part represents a subdirectory inside the repository that will be used as a build context.
For example, run this command to use a directory called docker
in the branch container
:
$ docker build https://github.com/docker/rootfs.git#container:docker
The following table represents all the valid suffixes with their build contexts:
Build Syntax Suffix | Commit Used | Build Context Used |
---|---|---|
myrepo.git | refs/heads/master | / |
myrepo.git#mytag | refs/tags/mytag | / |
myrepo.git#mybranch | refs/heads/mybranch | / |
myrepo.git#pull/42/head | refs/pull/42/head | / |
myrepo.git#:myfolder | refs/heads/master | /myfolder |
myrepo.git#master:myfolder | refs/heads/master | /myfolder |
myrepo.git#mytag:myfolder | refs/tags/mytag | /myfolder |
myrepo.git#mybranch:myfolder | refs/heads/mybranch | /myfolder |
If you pass an URL to a remote tarball, the URL itself is sent to the daemon:
$ docker build http://server/context.tar.gz
The download operation will be performed on the host the Docker daemon is running on, which is not necessarily the same host from which the build command is being issued. The Docker daemon will fetch context.tar.gz
and use it as the build context. Tarball contexts must be tar archives conforming to the standard tar
UNIX format and can be compressed with any one of the ‘xz’, ‘bzip2’, ‘gzip’ or ‘identity’ (no compression) formats.
Instead of specifying a context, you can pass a single Dockerfile
in the URL
or pipe the file in via STDIN
. To pipe a Dockerfile
from STDIN
:
$ docker build - < Dockerfile
With Powershell on Windows, you can run:
Get-Content Dockerfile | docker build -
If you use STDIN
or specify a URL
pointing to a plain text file, the system places the contents into a file called Dockerfile
, and any -f
, --file
option is ignored. In this scenario, there is no context.
By default the docker build
command will look for a Dockerfile
at the root of the build context. The -f
, --file
, option lets you specify the path to an alternative file to use instead. This is useful in cases where the same set of files are used for multiple builds. The path must be to a file within the build context. If a relative path is specified then it is interpreted as relative to the root of the context.
In most cases, it’s best to put each Dockerfile in an empty directory. Then, add to that directory only the files needed for building the Dockerfile. To increase the build’s performance, you can exclude files and directories by adding a .dockerignore
file to that directory as well. For information on creating one, see the .dockerignore file.
If the Docker client loses connection to the daemon, the build is canceled. This happens if you interrupt the Docker client with CTRL-c
or if the Docker client is killed for any reason. If the build initiated a pull which is still running at the time the build is cancelled, the pull is cancelled as well.
$ docker build .
Uploading context 10240 bytes
Step 1/3 : FROM busybox
Pulling repository busybox
---> e9aa60c60128MB/2.284 MB (100%) endpoint: https://cdn-registry-1.docker.io/v1/
Step 2/3 : RUN ls -lh /
---> Running in 9c9e81692ae9
total 24
drwxr-xr-x 2 root root 4.0K Mar 12 2013 bin
drwxr-xr-x 5 root root 4.0K Oct 19 00:19 dev
drwxr-xr-x 2 root root 4.0K Oct 19 00:19 etc
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 lib
lrwxrwxrwx 1 root root 3 Mar 12 2013 lib64 -> lib
dr-xr-xr-x 116 root root 0 Nov 15 23:34 proc
lrwxrwxrwx 1 root root 3 Mar 12 2013 sbin -> bin
dr-xr-xr-x 13 root root 0 Nov 15 23:34 sys
drwxr-xr-x 2 root root 4.0K Mar 12 2013 tmp
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 usr
---> b35f4035db3f
Step 3/3 : CMD echo Hello world
---> Running in 02071fceb21b
---> f52f38b7823e
Successfully built f52f38b7823e
Removing intermediate container 9c9e81692ae9
Removing intermediate container 02071fceb21b
This example specifies that the PATH
is .
, and so all the files in the local directory get tar
d and sent to the Docker daemon. The PATH
specifies where to find the files for the “context” of the build on the Docker daemon. Remember that the daemon could be running on a remote machine and that no parsing of the Dockerfile happens at the client side (where you’re running docker build
). That means that all the files at PATH
get sent, not just the ones listed to ADD in the Dockerfile.
The transfer of context from the local machine to the Docker daemon is what the docker
client means when you see the “Sending build context” message.
If you wish to keep the intermediate containers after the build is complete, you must use --rm=false
. This does not affect the build cache.
$ docker build github.com/creack/docker-firefox
This will clone the GitHub repository and use the cloned repository as context. The Dockerfile at the root of the repository is used as Dockerfile. You can specify an arbitrary Git repository by using the git://
or git@
scheme.
$ docker build -f ctx/Dockerfile http://server/ctx.tar.gz
Downloading context: http://server/ctx.tar.gz [===================>] 240 B/240 B
Step 1/3 : FROM busybox
---> 8c2e06607696
Step 2/3 : ADD ctx/container.cfg /
---> e7829950cee3
Removing intermediate container b35224abf821
Step 3/3 : CMD /bin/ls
---> Running in fbc63d321d73
---> 3286931702ad
Removing intermediate container fbc63d321d73
Successfully built 377c409b35e4
This sends the URL http://server/ctx.tar.gz
to the Docker daemon, which downloads and extracts the referenced tarball. The -f ctx/Dockerfile
parameter specifies a path inside ctx.tar.gz
to the Dockerfile
that is used to build the image. Any ADD
commands in that Dockerfile
that refers to local paths must be relative to the root of the contents inside ctx.tar.gz
. In the example above, the tarball contains a directory ctx/
, so the ADD ctx/container.cfg /
operation works as expected.
$ docker build - < Dockerfile
This will read a Dockerfile from STDIN
without context. Due to the lack of a context, no contents of any local directory will be sent to the Docker daemon. Since there is no context, a Dockerfile ADD
only works if it refers to a remote URL.
$ docker build - < context.tar.gz
This will build an image for a compressed context read from STDIN
. Supported formats are: bzip2, gzip and xz.
$ docker build .
Uploading context 18.829 MB
Uploading context
Step 1/2 : FROM busybox
---> 769b9341d937
Step 2/2 : CMD echo Hello world
---> Using cache
---> 99cc1ad10469
Successfully built 99cc1ad10469
$ echo ".git" > .dockerignore
$ docker build .
Uploading context 6.76 MB
Uploading context
Step 1/2 : FROM busybox
---> 769b9341d937
Step 2/2 : CMD echo Hello world
---> Using cache
---> 99cc1ad10469
Successfully built 99cc1ad10469
This example shows the use of the .dockerignore
file to exclude the .git
directory from the context. Its effect can be seen in the changed size of the uploaded context. The builder reference contains detailed information on creating a .dockerignore file
$ docker build -t vieux/apache:2.0 .
This will build like the previous example, but it will then tag the resulting image. The repository name will be vieux/apache
and the tag will be 2.0
. Read more about valid tags.
You can apply multiple tags to an image. For example, you can apply the latest
tag to a newly built image and add another tag that references a specific version. For example, to tag an image both as whenry/fedora-jboss:latest
and whenry/fedora-jboss:v2.1
, use the following:
$ docker build -t whenry/fedora-jboss:latest -t whenry/fedora-jboss:v2.1 .
$ docker build -f Dockerfile.debug .
This will use a file called Dockerfile.debug
for the build instructions instead of Dockerfile
.
$ curl example.com/remote/Dockerfile | docker build -f - .
The above command will use the current directory as the build context and read a Dockerfile from stdin.
$ docker build -f dockerfiles/Dockerfile.debug -t myapp_debug .
$ docker build -f dockerfiles/Dockerfile.prod -t myapp_prod .
The above commands will build the current build context (as specified by the .
) twice, once using a debug version of a Dockerfile
and once using a production version.
$ cd /home/me/myapp/some/dir/really/deep
$ docker build -f /home/me/myapp/dockerfiles/debug /home/me/myapp
$ docker build -f ../../../../dockerfiles/debug /home/me/myapp
These two docker build
commands do the exact same thing. They both use the contents of the debug
file instead of looking for a Dockerfile
and will use /home/me/myapp
as the root of the build context. Note that debug
is in the directory structure of the build context, regardless of how you refer to it on the command line.
Note:
docker build
will return ano such file or directory
error if the file or directory does not exist in the uploaded context. This may happen if there is no context, or if you specify a file that is elsewhere on the Host system. The context is limited to the current directory (and its children) for security reasons, and to ensure repeatable builds on remote Docker hosts. This is also the reason whyADD ../file
will not work.
When docker build
is run with the --cgroup-parent
option the containers used in the build will be run with the corresponding docker run
flag.
Using the --ulimit
option with docker build
will cause each build step’s container to be started using those --ulimit
flag values.
You can use ENV
instructions in a Dockerfile to define variable values. These values persist in the built image. However, often persistence is not what you want. Users want to specify variables differently depending on which host they build an image on.
A good example is http_proxy
or source versions for pulling intermediate files. The ARG
instruction lets Dockerfile authors define values that users can set at build-time using the --build-arg
flag:
$ docker build --build-arg HTTP_PROXY=http://10.20.30.2:1234 --build-arg FTP_PROXY=http://40.50.60.5:4567 .
This flag allows you to pass the build-time variables that are accessed like regular environment variables in the RUN
instruction of the Dockerfile. Also, these values don’t persist in the intermediate or final images like ENV
values do. You must add --build-arg
for each build argument.
Using this flag will not alter the output you see when the ARG
lines from the Dockerfile are echoed during the build process.
For detailed information on using ARG
and ENV
instructions, see the Dockerfile reference.
You may also use the --build-arg
flag without a value, in which case the value from the local environment will be propagated into the Docker container being built:
$ export HTTP_PROXY=http://10.20.30.2:1234
$ docker build --build-arg HTTP_PROXY .
This is similar to how docker run -e
works. Refer to the docker run
documentation for more information.
This flag is only supported on a daemon running on Windows, and only supports the credentialspec
option. The credentialspec
must be in the format file://spec.txt
or registry://keyname
.
This option is useful in situations where you are running Docker containers on Windows. The --isolation=<value>
option sets a container’s isolation technology. On Linux, the only supported is the default
option which uses Linux namespaces. On Microsoft Windows, you can specify these values:
Value | Description |
---|---|
default | Use the value specified by the Docker daemon’s --exec-opt . If the daemon does not specify an isolation technology, Microsoft Windows uses process as its default value. |
process | Namespace isolation only. |
hyperv | Hyper-V hypervisor partition-based isolation. |
Specifying the --isolation
flag without a value is the same as setting --isolation="default"
.
You can add other hosts into a container’s /etc/hosts
file by using one or more --add-host
flags. This example adds a static address for a host named docker
:
$ docker build --add-host=docker:10.180.0.1 .
When building a Dockerfile with multiple build stages, --target
can be used to specify an intermediate build stage by name as a final stage for the resulting image. Commands after the target stage will be skipped.
FROM debian AS build-env ... FROM alpine AS production-env ...
$ docker build -t mybuildimage --target build-env .
Once the image is built, squash the new layers into a new image with a single new layer. Squashing does not destroy any existing image, rather it creates a new image with the content of the squashed layers. This effectively makes it look like all Dockerfile
commands were created with a single layer. The build cache is preserved with this method.
The --squash
option is an experimental feature, and should not be considered stable.
Squashing layers can be beneficial if your Dockerfile produces multiple layers modifying the same files, for example, files that are created in one step, and removed in another step. For other use-cases, squashing images may actually have a negative impact on performance; when pulling an image consisting of multiple layers, layers can be pulled in parallel, and allows sharing layers between images (saving space).
For most use cases, multi-stage builds are a better alternative, as they give more fine-grained control over your build, and can take advantage of future optimizations in the builder. Refer to the use multi-stage builds section in the userguide for more information.
The --squash
option has a number of known limitations:
ENV
instructions), the squash step will fail (see issue #33823).The example on this page is using experimental mode in Docker 1.13.
Experimental mode can be enabled by using the --experimental
flag when starting the Docker daemon or setting experimental: true
in the daemon.json
configuration file.
By default, experimental mode is disabled. To see the current configuration, use the docker version
command.
Server: Version: 1.13.1 API version: 1.26 (minimum version 1.12) Go version: go1.7.5 Git commit: 092cba3 Built: Wed Feb 8 06:35:24 2017 OS/Arch: linux/amd64 Experimental: false [...]
To enable experimental mode, users need to restart the docker daemon with the experimental flag enabled.
Experimental features are now included in the standard Docker binaries as of version 1.13.0. For enabling experimental features, you need to start the Docker daemon with --experimental
flag. You can also enable the daemon flag via /etc/docker/daemon.json. e.g.
{
"experimental": true
}
Then make sure the experimental flag is enabled:
$ docker version -f '{{.Server.Experimental}}'
true
--squash
argumentThe following is an example of docker build with --squash
argument
FROM busybox RUN echo hello > /hello RUN echo world >> /hello RUN touch remove_me /remove_me ENV HELLO world RUN rm /remove_me
An image named test
is built with --squash
argument.
$ docker build --squash -t test .
[...]
If everything is right, the history will look like this:
$ docker history test
IMAGE CREATED CREATED BY SIZE COMMENT
4e10cb5b4cac 3 seconds ago 12 B merge sha256:88a7b0112a41826885df0e7072698006ee8f621c6ab99fca7fe9151d7b599702 to sha256:47bcc53f74dc94b1920f0b34f6036096526296767650f223433fe65c35f149eb
<missing> 5 minutes ago /bin/sh -c rm /remove_me 0 B
<missing> 5 minutes ago /bin/sh -c #(nop) ENV HELLO=world 0 B
<missing> 5 minutes ago /bin/sh -c touch remove_me /remove_me 0 B
<missing> 5 minutes ago /bin/sh -c echo world >> /hello 0 B
<missing> 6 minutes ago /bin/sh -c echo hello > /hello 0 B
<missing> 7 weeks ago /bin/sh -c #(nop) CMD ["sh"] 0 B
<missing> 7 weeks ago /bin/sh -c #(nop) ADD file:47ca6e777c36a4cfff 1.113 MB
We could find that all layer’s name is <missing>
, and there is a new layer with COMMENT merge
.
Test the image, check for /remove_me
being gone, make sure hello\nworld
is in /hello
, make sure the HELLO
envvar’s value is world
.
© 2019 Docker, Inc.
Licensed under the Apache License, Version 2.0.
Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other countries.
Docker, Inc. and other parties may also have trademark rights in other terms used herein.
https://docs.docker.com/engine/reference/commandline/build/