Tridiagonal decomposition of a selfadjoint matrix.
This is defined in the Eigenvalues module.
#include <Eigen/Eigenvalues>
_MatrixType | the type of the matrix of which we are computing the tridiagonal decomposition; this is expected to be an instantiation of the Matrix class template. |
This class performs a tridiagonal decomposition of a selfadjoint matrix \( A \) such that: \( A = Q T Q^* \) where \( Q \) is unitary and \( T \) a real symmetric tridiagonal matrix.
A tridiagonal matrix is a matrix which has nonzero elements only on the main diagonal and the first diagonal below and above it. The Hessenberg decomposition of a selfadjoint matrix is in fact a tridiagonal decomposition. This class is used in SelfAdjointEigenSolver to compute the eigenvalues and eigenvectors of a selfadjoint matrix.
Call the function compute() to compute the tridiagonal decomposition of a given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) constructor which computes the tridiagonal Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixQ() and matrixT() functions to retrieve the matrices Q and T in the decomposition.
The documentation of Tridiagonalization(const MatrixType&) contains an example of the typical use of this class.
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > | HouseholderSequenceType |
Return type of matrixQ() |
|
typedef Eigen::Index | Index |
typedef _MatrixType | MatrixType |
Synonym for the template parameter _MatrixType . |
|
template<typename InputType > | |
Tridiagonalization & | compute (const EigenBase< InputType > &matrix) |
Computes tridiagonal decomposition of given matrix. More... |
|
DiagonalReturnType | diagonal () const |
Returns the diagonal of the tridiagonal matrix T in the decomposition. More... |
|
CoeffVectorType | householderCoefficients () const |
Returns the Householder coefficients. More... |
|
HouseholderSequenceType | matrixQ () const |
Returns the unitary matrix Q in the decomposition. More... |
|
MatrixTReturnType | matrixT () const |
Returns an expression of the tridiagonal matrix T in the decomposition. More... |
|
const MatrixType & | packedMatrix () const |
Returns the internal representation of the decomposition. More... |
|
SubDiagonalReturnType | subDiagonal () const |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition. More... |
|
template<typename InputType > | |
Tridiagonalization (const EigenBase< InputType > &matrix) | |
Constructor; computes tridiagonal decomposition of given matrix. More... |
|
Tridiagonalization (Index size=Size==Dynamic ? 2 :Size) | |
Default constructor. More... |
|
typedef Eigen::Index Eigen::Tridiagonalization< _MatrixType >::Index |
| inlineexplicit |
Default constructor.
[in] | size | Positive integer, size of the matrix whose tridiagonal decomposition will be computed. |
The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size
parameter is only used as a hint. It is not an error to give a wrong size
, but it may impair performance.
| inlineexplicit |
Constructor; computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
This constructor calls compute() to compute the tridiagonal decomposition.
Example:
MatrixXd X = MatrixXd::Random(5,5); MatrixXd A = X + X.transpose(); cout << "Here is a random symmetric 5x5 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXd> triOfA(A); MatrixXd Q = triOfA.matrixQ(); cout << "The orthogonal matrix Q is:" << endl << Q << endl; MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "Q * T * Q^T = " << endl << Q * T * Q.transpose() << endl;
Output:
Here is a random symmetric 5x5 matrix: 1.36 -0.816 0.521 1.43 -0.144 -0.816 -0.659 0.794 -0.173 -0.406 0.521 0.794 -0.541 0.461 0.179 1.43 -0.173 0.461 -1.43 0.822 -0.144 -0.406 0.179 0.822 -1.37 The orthogonal matrix Q is: 1 0 0 0 0 0 -0.471 0.127 -0.671 -0.558 0 0.301 -0.195 0.437 -0.825 0 0.825 0.0459 -0.563 -0.00872 0 -0.0832 -0.971 -0.202 0.0922 The tridiagonal matrix T is: 1.36 1.73 0 0 0 1.73 -1.2 -0.966 0 0 0 -0.966 -1.28 0.214 0 0 0 0.214 -1.69 0.345 0 0 0 0.345 0.164 Q * T * Q^T = 1.36 -0.816 0.521 1.43 -0.144 -0.816 -0.659 0.794 -0.173 -0.406 0.521 0.794 -0.541 0.461 0.179 1.43 -0.173 0.461 -1.43 0.822 -0.144 -0.406 0.179 0.822 -1.37
| inline |
Computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
*this
The tridiagonal decomposition is computed by bringing the columns of the matrix successively in the required form using Householder reflections. The cost is \( 4n^3/3 \) flops, where \( n \) denotes the size of the given matrix.
This method reuses of the allocated data in the Tridiagonalization object, if the size of the matrix does not change.
Example:
Tridiagonalization<MatrixXf> tri; MatrixXf X = MatrixXf::Random(4,4); MatrixXf A = X + X.transpose(); tri.compute(A); cout << "The matrix T in the tridiagonal decomposition of A is: " << endl; cout << tri.matrixT() << endl; tri.compute(2*A); // re-use tri to compute eigenvalues of 2A cout << "The matrix T in the tridiagonal decomposition of 2A is: " << endl; cout << tri.matrixT() << endl;
Output:
The matrix T in the tridiagonal decomposition of A is: 1.36 -0.704 0 0 -0.704 0.0147 1.71 0 0 1.71 0.856 0.641 0 0 0.641 -0.506 The matrix T in the tridiagonal decomposition of 2A is: 2.72 -1.41 0 0 -1.41 0.0294 3.43 0 0 3.43 1.71 1.28 0 0 1.28 -1.01
Tridiagonalization< MatrixType >::DiagonalReturnType Eigen::Tridiagonalization< MatrixType >::diagonal |
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Example:
MatrixXcd X = MatrixXcd::Random(4,4); MatrixXcd A = X + X.adjoint(); cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXcd> triOfA(A); MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "We can also extract the diagonals of T directly ..." << endl; VectorXd diag = triOfA.diagonal(); cout << "The diagonal is:" << endl << diag << endl; VectorXd subdiag = triOfA.subDiagonal(); cout << "The subdiagonal is:" << endl << subdiag << endl;
Output:
Here is a random self-adjoint 4x4 matrix: (-0.422,0) (0.705,-1.01) (-0.17,-0.552) (0.338,-0.357) (0.705,1.01) (0.515,0) (0.241,-0.446) (0.05,-1.64) (-0.17,0.552) (0.241,0.446) (-1.03,0) (0.0449,1.72) (0.338,0.357) (0.05,1.64) (0.0449,-1.72) (1.36,0) The tridiagonal matrix T is: -0.422 -1.45 0 0 -1.45 1.01 -1.42 0 0 -1.42 1.8 -1.2 0 0 -1.2 -1.96 We can also extract the diagonals of T directly ... The diagonal is: -0.422 1.01 1.8 -1.96 The subdiagonal is: -1.45 -1.42 -1.2
| inline |
Returns the Householder coefficients.
The Householder coefficients allow the reconstruction of the matrix \( Q \) in the tridiagonal decomposition from the packed data.
Example:
Matrix4d X = Matrix4d::Random(4,4); Matrix4d A = X + X.transpose(); cout << "Here is a random symmetric 4x4 matrix:" << endl << A << endl; Tridiagonalization<Matrix4d> triOfA(A); Vector3d hc = triOfA.householderCoefficients(); cout << "The vector of Householder coefficients is:" << endl << hc << endl;
Output:
Here is a random symmetric 4x4 matrix: 1.36 0.612 0.122 0.326 0.612 -1.21 -0.222 0.563 0.122 -0.222 -0.0904 1.16 0.326 0.563 1.16 1.66 The vector of Householder coefficients is: 1.87 1.24 0
| inline |
Returns the unitary matrix Q in the decomposition.
This function returns a light-weight object of template class HouseholderSequence. You can either apply it directly to a matrix or you can convert it to a matrix of type MatrixType.
| inline |
Returns an expression of the tridiagonal matrix T in the decomposition.
Currently, this function can be used to extract the matrix T from internal data and copy it to a dense matrix object. In most cases, it may be sufficient to directly use the packed matrix or the vector expressions returned by diagonal() and subDiagonal() instead of creating a new dense copy matrix with this function.
| inline |
Returns the internal representation of the decomposition.
The returned matrix contains the following information:
See LAPACK for further details on this packed storage.
Example:
Matrix4d X = Matrix4d::Random(4,4); Matrix4d A = X + X.transpose(); cout << "Here is a random symmetric 4x4 matrix:" << endl << A << endl; Tridiagonalization<Matrix4d> triOfA(A); Matrix4d pm = triOfA.packedMatrix(); cout << "The packed matrix M is:" << endl << pm << endl; cout << "The diagonal and subdiagonal corresponds to the matrix T, which is:" << endl << triOfA.matrixT() << endl;
Output:
Here is a random symmetric 4x4 matrix: 1.36 0.612 0.122 0.326 0.612 -1.21 -0.222 0.563 0.122 -0.222 -0.0904 1.16 0.326 0.563 1.16 1.66 The packed matrix M is: 1.36 0.612 0.122 0.326 -0.704 0.0147 -0.222 0.563 0.0925 1.71 0.856 1.16 0.248 0.785 0.641 -0.506 The diagonal and subdiagonal corresponds to the matrix T, which is: 1.36 -0.704 0 0 -0.704 0.0147 1.71 0 0 1.71 0.856 0.641 0 0 0.641 -0.506
Tridiagonalization< MatrixType >::SubDiagonalReturnType Eigen::Tridiagonalization< MatrixType >::subDiagonal |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1Tridiagonalization.html