Copyright | (c) Daan Leijen 2002 (c) Andriy Palamarchuk 2008 |
---|---|
License | BSD-style |
Maintainer | [email protected] |
Portability | portable |
Safe Haskell | Safe |
Language | Haskell98 |
The Map k v
type represents a finite map (sometimes called a dictionary) from keys of type k
to values of type v
.
Each function in this module is careful to force values before installing them in a Map
. This is usually more efficient when laziness is not necessary. When laziness is required, use the functions in Data.Map.Lazy.
In particular, the functions in this module obey the following law:
When deciding if this is the correct data structure to use, consider:
Int
keys, you will get much better performance for most operations using Data.IntMap.Strict.Data.HashMap.Strict
from the unordered-containers package instead.For a walkthrough of the most commonly used functions see the maps introduction.
This module is intended to be imported qualified, to avoid name clashes with Prelude functions:
import qualified Data.Map.Strict as Map
Note that the implementation is generally left-biased. Functions that take two maps as arguments and combine them, such as union
and intersection
, prefer the values in the first argument to those in the second.
The amortized running time is given for each operation, with n referring to the number of entries in the map.
Benchmarks comparing Data.Map.Strict with other dictionary implementations can be found at https://github.com/haskell-perf/dictionaries.
The size of a Map
must not exceed maxBound::Int
. Violation of this condition is not detected and if the size limit is exceeded, its behaviour is undefined.
The Map
type is shared between the lazy and strict modules, meaning that the same Map
value can be passed to functions in both modules. This means that the Functor
, Traversable
and Data
instances are the same as for the Data.Map.Lazy module, so if they are used the resulting maps may contain suspended values (thunks).
The implementation of Map
is based on size balanced binary trees (or trees of bounded balance) as described by:
Bounds for union
, intersection
, and difference
are as given by
A Map from keys k
to values a
.
The Semigroup
operation for Map
is union
, which prefers values from the left operand. If m1
maps a key k
to a value a1
, and m2
maps the same key to a different value a2
, then their union m1 <> m2
maps k
to a1
.
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
Functor (Map k) | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methodsfold :: Monoid m => Map k m -> m Source foldMap :: Monoid m => (a -> m) -> Map k a -> m Source foldMap' :: Monoid m => (a -> m) -> Map k a -> m Source foldr :: (a -> b -> b) -> b -> Map k a -> b Source foldr' :: (a -> b -> b) -> b -> Map k a -> b Source foldl :: (b -> a -> b) -> b -> Map k a -> b Source foldl' :: (b -> a -> b) -> b -> Map k a -> b Source foldr1 :: (a -> a -> a) -> Map k a -> a Source foldl1 :: (a -> a -> a) -> Map k a -> a Source toList :: Map k a -> [a] Source null :: Map k a -> Bool Source length :: Map k a -> Int Source elem :: Eq a => a -> Map k a -> Bool Source maximum :: Ord a => Map k a -> a Source minimum :: Ord a => Map k a -> a Source | |
Traversable (Map k) | Traverses in order of increasing key. |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal MethodsliftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Map k a) Source liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Map k a] Source liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Map k a) Source liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Map k a] Source | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Eq k, Eq a) => Eq (Map k a) | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) Source toConstr :: Map k a -> Constr Source dataTypeOf :: Map k a -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) Source gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source | |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
Ord k => Semigroup (Map k v) | |
Ord k => Monoid (Map k v) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
type Item (Map k v) | |
Defined in Data.Map.Internal |
O(1). The empty map.
empty == fromList [] size empty == 0
singleton :: k -> a -> Map k a Source
O(1). A map with a single element.
singleton 1 'a' == fromList [(1, 'a')] size (singleton 1 'a') == 1
fromSet :: (k -> a) -> Set k -> Map k a Source
O(n). Build a map from a set of keys and a function which for each key computes its value.
fromSet (\k -> replicate k 'a') (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] fromSet undefined Data.Set.empty == empty
fromList :: Ord k => [(k, a)] -> Map k a Source
O(n*log n). Build a map from a list of key/value pairs. See also fromAscList
. If the list contains more than one value for the same key, the last value for the key is retained.
If the keys of the list are ordered, linear-time implementation is used, with the performance equal to fromDistinctAscList
.
fromList [] == empty fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]
fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map k a Source
O(n*log n). Build a map from a list of key/value pairs with a combining function. See also fromAscListWith
.
fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] fromListWith (++) [] == empty
fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a Source
O(n*log n). Build a map from a list of key/value pairs with a combining function. See also fromAscListWithKey
.
let f k a1 a2 = (show k) ++ a1 ++ a2 fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")] fromListWithKey f [] == empty
fromAscList :: Eq k => [(k, a)] -> Map k a Source
O(n). Build a map from an ascending list in linear time. The precondition (input list is ascending) is not checked.
fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")] valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False
fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a Source
O(n). Build a map from an ascending list in linear time with a combining function for equal keys. The precondition (input list is ascending) is not checked.
fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False
fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a Source
O(n). Build a map from an ascending list in linear time with a combining function for equal keys. The precondition (input list is ascending) is not checked.
let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2 fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")] valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False
fromDistinctAscList :: [(k, a)] -> Map k a Source
O(n). Build a map from an ascending list of distinct elements in linear time. The precondition is not checked.
fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] valid (fromDistinctAscList [(3,"b"), (5,"a")]) == True valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False
fromDescList :: Eq k => [(k, a)] -> Map k a Source
O(n). Build a map from a descending list in linear time. The precondition (input list is descending) is not checked.
fromDescList [(5,"a"), (3,"b")] == fromList [(3, "b"), (5, "a")] fromDescList [(5,"a"), (5,"b"), (3,"a")] == fromList [(3, "b"), (5, "b")] valid (fromDescList [(5,"a"), (5,"b"), (3,"b")]) == True valid (fromDescList [(5,"a"), (3,"b"), (5,"b")]) == False
fromDescListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a Source
O(n). Build a map from a descending list in linear time with a combining function for equal keys. The precondition (input list is descending) is not checked.
fromDescListWith (++) [(5,"a"), (5,"b"), (3,"b")] == fromList [(3, "b"), (5, "ba")] valid (fromDescListWith (++) [(5,"a"), (5,"b"), (3,"b")]) == True valid (fromDescListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False
fromDescListWithKey :: Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a Source
O(n). Build a map from a descending list in linear time with a combining function for equal keys. The precondition (input list is descending) is not checked.
let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2 fromDescListWithKey f [(5,"a"), (5,"b"), (5,"b"), (3,"b")] == fromList [(3, "b"), (5, "5:b5:ba")] valid (fromDescListWithKey f [(5,"a"), (5,"b"), (5,"b"), (3,"b")]) == True valid (fromDescListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False
fromDistinctDescList :: [(k, a)] -> Map k a Source
O(n). Build a map from a descending list of distinct elements in linear time. The precondition is not checked.
fromDistinctDescList [(5,"a"), (3,"b")] == fromList [(3, "b"), (5, "a")] valid (fromDistinctDescList [(5,"a"), (3,"b")]) == True valid (fromDistinctDescList [(5,"a"), (3,"b"), (3,"a")]) == False
insert :: Ord k => k -> a -> Map k a -> Map k a Source
O(log n). Insert a new key and value in the map. If the key is already present in the map, the associated value is replaced with the supplied value. insert
is equivalent to insertWith const
.
insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] insert 5 'x' empty == singleton 5 'x'
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a Source
O(log n). Insert with a function, combining new value and old value. insertWith f key value mp
will insert the pair (key, value) into mp
if key does not exist in the map. If the key does exist, the function will insert the pair (key, f new_value old_value)
.
insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] insertWith (++) 5 "xxx" empty == singleton 5 "xxx"
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a Source
O(log n). Insert with a function, combining key, new value and old value. insertWithKey f key value mp
will insert the pair (key, value) into mp
if key does not exist in the map. If the key does exist, the function will insert the pair (key,f key new_value old_value)
. Note that the key passed to f is the same key passed to insertWithKey
.
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] insertWithKey f 5 "xxx" empty == singleton 5 "xxx"
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a) Source
O(log n). Combines insert operation with old value retrieval. The expression (insertLookupWithKey f k x map
) is a pair where the first element is equal to (lookup k map
) and the second element equal to (insertWithKey f k x map
).
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")
This is how to define insertLookup
using insertLookupWithKey
:
let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])
delete :: Ord k => k -> Map k a -> Map k a Source
O(log n). Delete a key and its value from the map. When the key is not a member of the map, the original map is returned.
delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] delete 5 empty == empty
adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a Source
O(log n). Update a value at a specific key with the result of the provided function. When the key is not a member of the map, the original map is returned.
adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] adjust ("new " ++) 7 empty == empty
adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a Source
O(log n). Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.
let f key x = (show key) ++ ":new " ++ x adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] adjustWithKey f 7 empty == empty
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a Source
O(log n). The expression (update f k map
) updates the value x
at k
(if it is in the map). If (f x
) is Nothing
, the element is deleted. If it is (Just y
), the key k
is bound to the new value y
.
let f x = if x == "a" then Just "new a" else Nothing update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a Source
O(log n). The expression (updateWithKey f k map
) updates the value x
at k
(if it is in the map). If (f k x
) is Nothing
, the element is deleted. If it is (Just y
), the key k
is bound to the new value y
.
let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a) Source
O(log n). Lookup and update. See also updateWithKey
. The function returns changed value, if it is updated. Returns the original key value if the map entry is deleted.
let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")]) updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a Source
O(log n). The expression (alter f k map
) alters the value x
at k
, or absence thereof. alter
can be used to insert, delete, or update a value in a Map
. In short : lookup k (alter f k m) = f (lookup k m)
.
let f _ = Nothing alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" let f _ = Just "c" alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")] alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")]
alterF :: (Functor f, Ord k) => (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a) Source
O(log n). The expression (alterF f k map
) alters the value x
at k
, or absence thereof. alterF
can be used to inspect, insert, delete, or update a value in a Map
. In short: lookup k <$> alterF f k m = f (lookup k m)
.
Example:
interactiveAlter :: Int -> Map Int String -> IO (Map Int String) interactiveAlter k m = alterF f k m where f Nothing = do putStrLn $ show k ++ " was not found in the map. Would you like to add it?" getUserResponse1 :: IO (Maybe String) f (Just old) = do putStrLn $ "The key is currently bound to " ++ show old ++ ". Would you like to change or delete it?" getUserResponse2 :: IO (Maybe String)
alterF
is the most general operation for working with an individual key that may or may not be in a given map. When used with trivial functors like Identity
and Const
, it is often slightly slower than more specialized combinators like lookup
and insert
. However, when the functor is non-trivial and key comparison is not particularly cheap, it is the fastest way.
Note on rewrite rules:
This module includes GHC rewrite rules to optimize alterF
for the Const
and Identity
functors. In general, these rules improve performance. The sole exception is that when using Identity
, deleting a key that is already absent takes longer than it would without the rules. If you expect this to occur a very large fraction of the time, you might consider using a private copy of the Identity
type.
Note: alterF
is a flipped version of the at
combinator from Control.Lens.At
.
lookup :: Ord k => k -> Map k a -> Maybe a Source
O(log n). Lookup the value at a key in the map.
The function will return the corresponding value as (Just value)
, or Nothing
if the key isn't in the map.
An example of using lookup
:
import Prelude hiding (lookup) import Data.Map employeeDept = fromList([("John","Sales"), ("Bob","IT")]) deptCountry = fromList([("IT","USA"), ("Sales","France")]) countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")]) employeeCurrency :: String -> Maybe String employeeCurrency name = do dept <- lookup name employeeDept country <- lookup dept deptCountry lookup country countryCurrency main = do putStrLn $ "John's currency: " ++ (show (employeeCurrency "John")) putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))
The output of this program:
John's currency: Just "Euro" Pete's currency: Nothing
(!?) :: Ord k => Map k a -> k -> Maybe a infixl 9 Source
O(log n). Find the value at a key. Returns Nothing
when the element can not be found.
fromList [(5, 'a'), (3, 'b')] !? 1 == Nothing
fromList [(5, 'a'), (3, 'b')] !? 5 == Just 'a'
Since: containers-0.5.9
(!) :: Ord k => Map k a -> k -> a infixl 9 Source
O(log n). Find the value at a key. Calls error
when the element can not be found.
fromList [(5,'a'), (3,'b')] ! 1 Error: element not in the map fromList [(5,'a'), (3,'b')] ! 5 == 'a'
findWithDefault :: Ord k => a -> k -> Map k a -> a Source
O(log n). The expression (findWithDefault def k map)
returns the value at key k
or returns default value def
when the key is not in the map.
findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
member :: Ord k => k -> Map k a -> Bool Source
O(log n). Is the key a member of the map? See also notMember
.
member 5 (fromList [(5,'a'), (3,'b')]) == True member 1 (fromList [(5,'a'), (3,'b')]) == False
notMember :: Ord k => k -> Map k a -> Bool Source
O(log n). Is the key not a member of the map? See also member
.
notMember 5 (fromList [(5,'a'), (3,'b')]) == False notMember 1 (fromList [(5,'a'), (3,'b')]) == True
lookupLT :: Ord k => k -> Map k v -> Maybe (k, v) Source
O(log n). Find largest key smaller than the given one and return the corresponding (key, value) pair.
lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
lookupGT :: Ord k => k -> Map k v -> Maybe (k, v) Source
O(log n). Find smallest key greater than the given one and return the corresponding (key, value) pair.
lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupLE :: Ord k => k -> Map k v -> Maybe (k, v) Source
O(log n). Find largest key smaller or equal to the given one and return the corresponding (key, value) pair.
lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
lookupGE :: Ord k => k -> Map k v -> Maybe (k, v) Source
O(log n). Find smallest key greater or equal to the given one and return the corresponding (key, value) pair.
lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing
null :: Map k a -> Bool Source
O(1). Is the map empty?
Data.Map.null (empty) == True Data.Map.null (singleton 1 'a') == False
O(1). The number of elements in the map.
size empty == 0 size (singleton 1 'a') == 1 size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3
union :: Ord k => Map k a -> Map k a -> Map k a Source
O(m*log(n/m + 1)), m <= n. The expression (union t1 t2
) takes the left-biased union of t1
and t2
. It prefers t1
when duplicate keys are encountered, i.e. (union == unionWith const
).
union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]
unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a Source
O(m*log(n/m + 1)), m <= n. Union with a combining function.
unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]
unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a Source
O(m*log(n/m + 1)), m <= n. Union with a combining function.
let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]
unions :: (Foldable f, Ord k) => f (Map k a) -> Map k a Source
The union of a list of maps: (unions == foldl union empty
).
unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] == fromList [(3, "b"), (5, "a"), (7, "C")] unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])] == fromList [(3, "B3"), (5, "A3"), (7, "C")]
unionsWith :: (Foldable f, Ord k) => (a -> a -> a) -> f (Map k a) -> Map k a Source
The union of a list of maps, with a combining operation: (unionsWith f == foldl (unionWith f) empty
).
unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]
difference :: Ord k => Map k a -> Map k b -> Map k a Source
O(m*log(n/m + 1)), m <= n. Difference of two maps. Return elements of the first map not existing in the second map.
difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"
(\\) :: Ord k => Map k a -> Map k b -> Map k a infixl 9 Source
Same as difference
.
differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a Source
O(n+m). Difference with a combining function. When two equal keys are encountered, the combining function is applied to the values of these keys. If it returns Nothing
, the element is discarded (proper set difference). If it returns (Just y
), the element is updated with a new value y
.
let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) == singleton 3 "b:B"
differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a Source
O(n+m). Difference with a combining function. When two equal keys are encountered, the combining function is applied to the key and both values. If it returns Nothing
, the element is discarded (proper set difference). If it returns (Just y
), the element is updated with a new value y
.
let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) == singleton 3 "3:b|B"
intersection :: Ord k => Map k a -> Map k b -> Map k a Source
O(m*log(n/m + 1)), m <= n. Intersection of two maps. Return data in the first map for the keys existing in both maps. (intersection m1 m2 == intersectionWith const m1 m2
).
intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"
intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c Source
O(m*log(n/m + 1)), m <= n. Intersection with a combining function.
intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"
intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c Source
O(m*log(n/m + 1)), m <= n. Intersection with a combining function.
let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"
disjoint :: Ord k => Map k a -> Map k b -> Bool Source
O(m*log(n/m + 1)), m <= n. Check whether the key sets of two maps are disjoint (i.e., their intersection
is empty).
disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())]) == True disjoint (fromList [(2,'a')]) (fromList [(1,'a'), (2,'b')]) == False disjoint (fromList []) (fromList []) == True
xs `disjoint` ys = null (xs `intersection` ys)
Since: containers-0.6.2.1
mergeWithKey :: Ord k => (k -> a -> b -> Maybe c) -> (Map k a -> Map k c) -> (Map k b -> Map k c) -> Map k a -> Map k b -> Map k c Source
O(n+m). An unsafe universal combining function.
WARNING: This function can produce corrupt maps and its results may depend on the internal structures of its inputs. Users should prefer merge
or mergeA
.
When mergeWithKey
is given three arguments, it is inlined to the call site. You should therefore use mergeWithKey
only to define custom combining functions. For example, you could define unionWithKey
, differenceWithKey
and intersectionWithKey
as
myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
When calling mergeWithKey combine only1 only2
, a function combining two Map
s is created, such that
combine
function. Depending on the result, the key is either present in the result with specified value, or is left out;only1
and the output is added to the result;only2
and the output is added to the result.The only1
and only2
methods must return a map with a subset (possibly empty) of the keys of the given map. The values can be modified arbitrarily. Most common variants of only1
and only2
are id
and const empty
, but for example map f
or filterWithKey f
could be used for any f
.
map :: (a -> b) -> Map k a -> Map k b Source
O(n). Map a function over all values in the map.
map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b Source
O(n). Map a function over all values in the map.
let f key x = (show key) ++ ":" ++ x mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]
traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b) Source
O(n). traverseWithKey f m == fromList $ traverse ((k, v) -> (v' -> v' `seq` (k,v')) $ f k v) (toList m)
That is, it behaves much like a regular traverse
except that the traversing function also has access to the key associated with a value and the values are forced before they are installed in the result map.
traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing
traverseMaybeWithKey :: Applicative f => (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b) Source
O(n). Traverse keys/values and collect the Just
results.
Since: containers-0.5.8
mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c) Source
O(n). The function mapAccum
threads an accumulating argument through the map in ascending order of keys.
let f a b = (a ++ b, b ++ "X") mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])
mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c) Source
O(n). The function mapAccumWithKey
threads an accumulating argument through the map in ascending order of keys.
let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])
mapAccumRWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c) Source
O(n). The function mapAccumR
threads an accumulating argument through the map in descending order of keys.
mapKeys :: Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a Source
O(n*log n). mapKeys f s
is the map obtained by applying f
to each key of s
.
The size of the result may be smaller if f
maps two or more distinct keys to the same new key. In this case the value at the greatest of the original keys is retained.
mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")] mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c" mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"
mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a Source
O(n*log n). mapKeysWith c f s
is the map obtained by applying f
to each key of s
.
The size of the result may be smaller if f
maps two or more distinct keys to the same new key. In this case the associated values will be combined using c
. The value at the greater of the two original keys is used as the first argument to c
.
mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"
mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a Source
O(n). mapKeysMonotonic f s == mapKeys f s
, but works only when f
is strictly monotonic. That is, for any values x
and y
, if x
< y
then f x
< f y
. The precondition is not checked. Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls] ==> mapKeysMonotonic f s == mapKeys f s where ls = keys s
This means that f
maps distinct original keys to distinct resulting keys. This function has better performance than mapKeys
.
mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")] valid (mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")])) == True valid (mapKeysMonotonic (\ _ -> 1) (fromList [(5,"a"), (3,"b")])) == False
foldr :: (a -> b -> b) -> b -> Map k a -> b Source
O(n). Fold the values in the map using the given right-associative binary operator, such that foldr f z == foldr f z . elems
.
For example,
elems map = foldr (:) [] map
let f a len = len + (length a) foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldl :: (a -> b -> a) -> a -> Map k b -> a Source
O(n). Fold the values in the map using the given left-associative binary operator, such that foldl f z == foldl f z . elems
.
For example,
elems = reverse . foldl (flip (:)) []
let f len a = len + (length a) foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b Source
O(n). Fold the keys and values in the map using the given right-associative binary operator, such that foldrWithKey f z == foldr (uncurry f) z . toAscList
.
For example,
keys map = foldrWithKey (\k x ks -> k:ks) [] map
let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"
foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a Source
O(n). Fold the keys and values in the map using the given left-associative binary operator, such that foldlWithKey f z == foldl (\z' (kx, x) -> f z' kx x) z . toAscList
.
For example,
keys = reverse . foldlWithKey (\ks k x -> k:ks) []
let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"
foldMapWithKey :: Monoid m => (k -> a -> m) -> Map k a -> m Source
O(n). Fold the keys and values in the map using the given monoid, such that
foldMapWithKey f = fold . mapWithKey f
This can be an asymptotically faster than foldrWithKey
or foldlWithKey
for some monoids.
Since: containers-0.5.4
foldr' :: (a -> b -> b) -> b -> Map k a -> b Source
O(n). A strict version of foldr
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> Map k b -> a Source
O(n). A strict version of foldl
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldrWithKey' :: (k -> a -> b -> b) -> b -> Map k a -> b Source
O(n). A strict version of foldrWithKey
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldlWithKey' :: (a -> k -> b -> a) -> a -> Map k b -> a Source
O(n). A strict version of foldlWithKey
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
elems :: Map k a -> [a] Source
O(n). Return all elements of the map in the ascending order of their keys. Subject to list fusion.
elems (fromList [(5,"a"), (3,"b")]) == ["b","a"] elems empty == []
O(n). Return all keys of the map in ascending order. Subject to list fusion.
keys (fromList [(5,"a"), (3,"b")]) == [3,5] keys empty == []
assocs :: Map k a -> [(k, a)] Source
O(n). An alias for toAscList
. Return all key/value pairs in the map in ascending key order. Subject to list fusion.
assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] assocs empty == []
keysSet :: Map k a -> Set k Source
O(n). The set of all keys of the map.
keysSet (fromList [(5,"a"), (3,"b")]) == Data.Set.fromList [3,5] keysSet empty == Data.Set.empty
toList :: Map k a -> [(k, a)] Source
O(n). Convert the map to a list of key/value pairs. Subject to list fusion.
toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] toList empty == []
toAscList :: Map k a -> [(k, a)] Source
O(n). Convert the map to a list of key/value pairs where the keys are in ascending order. Subject to list fusion.
toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
toDescList :: Map k a -> [(k, a)] Source
O(n). Convert the map to a list of key/value pairs where the keys are in descending order. Subject to list fusion.
toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]
filter :: (a -> Bool) -> Map k a -> Map k a Source
O(n). Filter all values that satisfy the predicate.
filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty
filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a Source
O(n). Filter all keys/values that satisfy the predicate.
filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
restrictKeys :: Ord k => Map k a -> Set k -> Map k a Source
O(m*log(n/m + 1)), m <= n. Restrict a Map
to only those keys found in a Set
.
m `restrictKeys` s = filterWithKey (k _ -> k `member` s) m m `restrictKeys` s = m `intersection` fromSet (const ()) s
Since: containers-0.5.8
withoutKeys :: Ord k => Map k a -> Set k -> Map k a Source
O(m*log(n/m + 1)), m <= n. Remove all keys in a Set
from a Map
.
m `withoutKeys` s = filterWithKey (k _ -> k `notMember` s) m m `withoutKeys` s = m `difference` fromSet (const ()) s
Since: containers-0.5.8
partition :: (a -> Bool) -> Map k a -> (Map k a, Map k a) Source
O(n). Partition the map according to a predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split
.
partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])
partitionWithKey :: (k -> a -> Bool) -> Map k a -> (Map k a, Map k a) Source
O(n). Partition the map according to a predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split
.
partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b") partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])
takeWhileAntitone :: (k -> Bool) -> Map k a -> Map k a Source
O(log n). Take while a predicate on the keys holds. The user is responsible for ensuring that for all keys j
and k
in the map, j < k ==> p j >= p k
. See note at spanAntitone
.
takeWhileAntitone p = fromDistinctAscList . takeWhile (p . fst) . toList takeWhileAntitone p = filterWithKey (k _ -> p k)
Since: containers-0.5.8
dropWhileAntitone :: (k -> Bool) -> Map k a -> Map k a Source
O(log n). Drop while a predicate on the keys holds. The user is responsible for ensuring that for all keys j
and k
in the map, j < k ==> p j >= p k
. See note at spanAntitone
.
dropWhileAntitone p = fromDistinctAscList . dropWhile (p . fst) . toList dropWhileAntitone p = filterWithKey (k -> not (p k))
Since: containers-0.5.8
spanAntitone :: (k -> Bool) -> Map k a -> (Map k a, Map k a) Source
O(log n). Divide a map at the point where a predicate on the keys stops holding. The user is responsible for ensuring that for all keys j
and k
in the map, j < k ==> p j >= p k
.
spanAntitone p xs = (takeWhileAntitone p xs, dropWhileAntitone p xs) spanAntitone p xs = partitionWithKey (k _ -> p k) xs
Note: if p
is not actually antitone, then spanAntitone
will split the map at some unspecified point where the predicate switches from holding to not holding (where the predicate is seen to hold before the first key and to fail after the last key).
Since: containers-0.5.8
mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b Source
O(n). Map values and collect the Just
results.
let f x = if x == "a" then Just "new a" else Nothing mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"
mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b Source
O(n). Map keys/values and collect the Just
results.
let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c) Source
O(n). Map values and separate the Left
and Right
results.
let f a = if a < "c" then Left a else Right a mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c) Source
O(n). Map keys/values and separate the Left
and Right
results.
let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])
split :: Ord k => k -> Map k a -> (Map k a, Map k a) Source
O(log n). The expression (split k map
) is a pair (map1,map2)
where the keys in map1
are smaller than k
and the keys in map2
larger than k
. Any key equal to k
is found in neither map1
nor map2
.
split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")]) split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a") split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty) split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)
splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a) Source
O(log n). The expression (splitLookup k map
) splits a map just like split
but also returns lookup k map
.
splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")]) splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a") splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a") splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty) splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)
splitRoot :: Map k b -> [Map k b] Source
O(1). Decompose a map into pieces based on the structure of the underlying tree. This function is useful for consuming a map in parallel.
No guarantee is made as to the sizes of the pieces; an internal, but deterministic process determines this. However, it is guaranteed that the pieces returned will be in ascending order (all elements in the first submap less than all elements in the second, and so on).
Examples:
splitRoot (fromList (zip [1..6] ['a'..])) == [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d')],fromList [(5,'e'),(6,'f')]]
splitRoot empty == []
Note that the current implementation does not return more than three submaps, but you should not depend on this behaviour because it can change in the future without notice.
Since: containers-0.5.4
isSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool Source
O(m*log(n/m + 1)), m <= n. This function is defined as (isSubmapOf = isSubmapOfBy (==)
).
isSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool Source
O(m*log(n/m + 1)), m <= n. The expression (isSubmapOfBy f t1 t2
) returns True
if all keys in t1
are in tree t2
, and when f
returns True
when applied to their respective values. For example, the following expressions are all True
:
isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)])
But the following are all False
:
isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)]) isSubmapOfBy (<) (fromList [('a',1)]) (fromList [('a',1),('b',2)]) isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)])
Note that isSubmapOfBy (_ _ -> True) m1 m2
tests whether all the keys in m1
are also keys in m2
.
isProperSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool Source
O(m*log(n/m + 1)), m <= n. Is this a proper submap? (ie. a submap but not equal). Defined as (isProperSubmapOf = isProperSubmapOfBy (==)
).
isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool Source
O(m*log(n/m + 1)), m <= n. Is this a proper submap? (ie. a submap but not equal). The expression (isProperSubmapOfBy f m1 m2
) returns True
when m1
and m2
are not equal, all keys in m1
are in m2
, and when f
returns True
when applied to their respective values. For example, the following expressions are all True
:
isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
But the following are all False
:
isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
lookupIndex :: Ord k => k -> Map k a -> Maybe Int Source
O(log n). Lookup the index of a key, which is its zero-based index in the sequence sorted by keys. The index is a number from 0 up to, but not including, the size
of the map.
isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")])) == False fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0 fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1 isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")])) == False
findIndex :: Ord k => k -> Map k a -> Int Source
O(log n). Return the index of a key, which is its zero-based index in the sequence sorted by keys. The index is a number from 0 up to, but not including, the size
of the map. Calls error
when the key is not a member
of the map.
findIndex 2 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0 findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1 findIndex 6 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map
elemAt :: Int -> Map k a -> (k, a) Source
O(log n). Retrieve an element by its index, i.e. by its zero-based index in the sequence sorted by keys. If the index is out of range (less than zero, greater or equal to size
of the map), error
is called.
elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b") elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a") elemAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range
updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a Source
O(log n). Update the element at index. Calls error
when an invalid index is used.
updateAt (\ _ _ -> Just "x") 0 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")] updateAt (\ _ _ -> Just "x") 1 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")] updateAt (\ _ _ -> Just "x") 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range updateAt (\_ _ -> Nothing) 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateAt (\_ _ -> Nothing) 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateAt (\_ _ -> Nothing) 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range updateAt (\_ _ -> Nothing) (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range
deleteAt :: Int -> Map k a -> Map k a Source
O(log n). Delete the element at index, i.e. by its zero-based index in the sequence sorted by keys. If the index is out of range (less than zero, greater or equal to size
of the map), error
is called.
deleteAt 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" deleteAt 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" deleteAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range deleteAt (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range
take :: Int -> Map k a -> Map k a Source
Take a given number of entries in key order, beginning with the smallest keys.
take n = fromDistinctAscList . take n . toAscList
Since: containers-0.5.8
drop :: Int -> Map k a -> Map k a Source
Drop a given number of entries in key order, beginning with the smallest keys.
drop n = fromDistinctAscList . drop n . toAscList
Since: containers-0.5.8
splitAt :: Int -> Map k a -> (Map k a, Map k a) Source
O(log n). Split a map at a particular index.
splitAt !n !xs = (take n xs, drop n xs)
Since: containers-0.5.8
lookupMin :: Map k a -> Maybe (k, a) Source
O(log n). The minimal key of the map. Returns Nothing
if the map is empty.
lookupMin (fromList [(5,"a"), (3,"b")]) == Just (3,"b") findMin empty = Nothing
Since: containers-0.5.9
lookupMax :: Map k a -> Maybe (k, a) Source
O(log n). The maximal key of the map. Returns Nothing
if the map is empty.
lookupMax (fromList [(5,"a"), (3,"b")]) == Just (5,"a") lookupMax empty = Nothing
Since: containers-0.5.9
findMin :: Map k a -> (k, a) Source
O(log n). The minimal key of the map. Calls error
if the map is empty.
findMin (fromList [(5,"a"), (3,"b")]) == (3,"b") findMin empty Error: empty map has no minimal element
findMax :: Map k a -> (k, a) Source
deleteMin :: Map k a -> Map k a Source
O(log n). Delete the minimal key. Returns an empty map if the map is empty.
deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")] deleteMin empty == empty
deleteMax :: Map k a -> Map k a Source
O(log n). Delete the maximal key. Returns an empty map if the map is empty.
deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")] deleteMax empty == empty
deleteFindMin :: Map k a -> ((k, a), Map k a) Source
O(log n). Delete and find the minimal element.
deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")]) deleteFindMin Error: can not return the minimal element of an empty map
deleteFindMax :: Map k a -> ((k, a), Map k a) Source
O(log n). Delete and find the maximal element.
deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")]) deleteFindMax empty Error: can not return the maximal element of an empty map
updateMin :: (a -> Maybe a) -> Map k a -> Map k a Source
O(log n). Update the value at the minimal key.
updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMax :: (a -> Maybe a) -> Map k a -> Map k a Source
O(log n). Update the value at the maximal key.
updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a Source
O(log n). Update the value at the minimal key.
updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a Source
O(log n). Update the value at the maximal key.
updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
minView :: Map k a -> Maybe (a, Map k a) Source
O(log n). Retrieves the value associated with minimal key of the map, and the map stripped of that element, or Nothing
if passed an empty map.
minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a") minView empty == Nothing
maxView :: Map k a -> Maybe (a, Map k a) Source
O(log n). Retrieves the value associated with maximal key of the map, and the map stripped of that element, or Nothing
if passed an empty map.
maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b") maxView empty == Nothing
minViewWithKey :: Map k a -> Maybe ((k, a), Map k a) Source
O(log n). Retrieves the minimal (key,value) pair of the map, and the map stripped of that element, or Nothing
if passed an empty map.
minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a") minViewWithKey empty == Nothing
maxViewWithKey :: Map k a -> Maybe ((k, a), Map k a) Source
O(log n). Retrieves the maximal (key,value) pair of the map, and the map stripped of that element, or Nothing
if passed an empty map.
maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b") maxViewWithKey empty == Nothing
showTree :: Whoops "showTree has moved to Data.Map.Internal.Debug.showTree." => Map k a -> String Source
This function has moved to showTree
.
showTreeWith :: Whoops "showTreeWith has moved to Data.Map.Internal.Debug.showTreeWith." => (k -> a -> String) -> Bool -> Bool -> Map k a -> String Source
This function has moved to showTreeWith
.
valid :: Ord k => Map k a -> Bool Source
O(n). Test if the internal map structure is valid.
valid (fromAscList [(3,"b"), (5,"a")]) == True valid (fromAscList [(5,"a"), (3,"b")]) == False
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.8.3/docs/html/libraries/containers-0.6.2.1/Data-Map-Strict.html