This page provides an overview of init containers: specialized containers that run before app containers in a Pod. Init containers can contain utilities or setup scripts not present in an app image.
You can specify init containers in the Pod specification alongside the containers
array (which describes app containers).
A Pod can have multiple containers running apps within it, but it can also have one or more init containers, which are run before the app containers are started.
Init containers are exactly like regular containers, except:
If a Pod's init container fails, the kubelet repeatedly restarts that init container until it succeeds. However, if the Pod has a restartPolicy
of Never, and an init container fails during startup of that Pod, Kubernetes treats the overall Pod as failed.
To specify an init container for a Pod, add the initContainers
field into the Pod specification, as an array of container
items (similar to the app containers
field and its contents). See Container in the API reference for more details.
The status of the init containers is returned in .status.initContainerStatuses
field as an array of the container statuses (similar to the .status.containerStatuses
field).
Init containers support all the fields and features of app containers, including resource limits, volumes, and security settings. However, the resource requests and limits for an init container are handled differently, as documented in Resources.
Also, init containers do not support lifecycle
, livenessProbe
, readinessProbe
, or startupProbe
because they must run to completion before the Pod can be ready.
If you specify multiple init containers for a Pod, kubelet runs each init container sequentially. Each init container must succeed before the next can run. When all of the init containers have run to completion, kubelet initializes the application containers for the Pod and runs them as usual.
Because init containers have separate images from app containers, they have some advantages for start-up related code:
FROM
another image just to use a tool like sed
, awk
, python
, or dig
during setup.Here are some ideas for how to use init containers:
Wait for a Service to be created, using a shell one-line command like:
for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1
Register this Pod with a remote server from the downward API with a command like:
curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d 'instance=$(<POD_NAME>)&ip=$(<POD_IP>)'
Wait for some time before starting the app container with a command like
sleep 60
Clone a Git repository into a Volume
Place values into a configuration file and run a template tool to dynamically generate a configuration file for the main app container. For example, place the POD_IP
value in a configuration and generate the main app configuration file using Jinja.
This example defines a simple Pod that has two init containers. The first waits for myservice
, and the second waits for mydb
. Once both init containers complete, the Pod runs the app container from its spec
section.
apiVersion: v1
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: busybox:1.28
command: ['sh', '-c', 'echo The app is running! && sleep 3600']
initContainers:
- name: init-myservice
image: busybox:1.28
command: ['sh', '-c', "until nslookup myservice.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for myservice; sleep 2; done"]
- name: init-mydb
image: busybox:1.28
command: ['sh', '-c', "until nslookup mydb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for mydb; sleep 2; done"]
You can start this Pod by running:
kubectl apply -f myapp.yaml
The output is similar to this:
pod/myapp-pod created
And check on its status with:
kubectl get -f myapp.yaml
The output is similar to this:
NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 6m
or for more details:
kubectl describe -f myapp.yaml
The output is similar to this:
Name: myapp-pod
Namespace: default
[...]
Labels: app=myapp
Status: Pending
[...]
Init Containers:
init-myservice:
[...]
State: Running
[...]
init-mydb:
[...]
State: Waiting
Reason: PodInitializing
Ready: False
[...]
Containers:
myapp-container:
[...]
State: Waiting
Reason: PodInitializing
Ready: False
[...]
Events:
FirstSeen LastSeen Count From SubObjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
16s 16s 1 {default-scheduler } Normal Scheduled Successfully assigned myapp-pod to 172.17.4.201
16s 16s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulling pulling image "busybox"
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulled Successfully pulled image "busybox"
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Created Created container with docker id 5ced34a04634; Security:[seccomp=unconfined]
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Started Started container with docker id 5ced34a04634
To see logs for the init containers in this Pod, run:
kubectl logs myapp-pod -c init-myservice # Inspect the first init container
kubectl logs myapp-pod -c init-mydb # Inspect the second init container
At this point, those init containers will be waiting to discover Services named mydb
and myservice
.
Here's a configuration you can use to make those Services appear:
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
---
apiVersion: v1
kind: Service
metadata:
name: mydb
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9377
To create the mydb
and myservice
services:
kubectl apply -f services.yaml
The output is similar to this:
service/myservice created
service/mydb created
You'll then see that those init containers complete, and that the myapp-pod
Pod moves into the Running state:
kubectl get -f myapp.yaml
The output is similar to this:
NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 9m
This simple example should provide some inspiration for you to create your own init containers. What's next contains a link to a more detailed example.
During Pod startup, the kubelet delays running init containers until the networking and storage are ready. Then the kubelet runs the Pod's init containers in the order they appear in the Pod's spec.
Each init container must exit successfully before the next container starts. If a container fails to start due to the runtime or exits with failure, it is retried according to the Pod restartPolicy
. However, if the Pod restartPolicy
is set to Always, the init containers use restartPolicy
OnFailure.
A Pod cannot be Ready
until all init containers have succeeded. The ports on an init container are not aggregated under a Service. A Pod that is initializing is in the Pending
state but should have a condition Initialized
set to false.
If the Pod restarts, or is restarted, all init containers must execute again.
Changes to the init container spec are limited to the container image field. Altering an init container image field is equivalent to restarting the Pod.
Because init containers can be restarted, retried, or re-executed, init container code should be idempotent. In particular, code that writes to files on EmptyDirs
should be prepared for the possibility that an output file already exists.
Init containers have all of the fields of an app container. However, Kubernetes prohibits readinessProbe
from being used because init containers cannot define readiness distinct from completion. This is enforced during validation.
Use activeDeadlineSeconds
on the Pod to prevent init containers from failing forever. The active deadline includes init containers. However it is recommended to use activeDeadlineSeconds
only if teams deploy their application as a Job, because activeDeadlineSeconds
has an effect even after initContainer finished. The Pod which is already running correctly would be killed by activeDeadlineSeconds
if you set.
The name of each app and init container in a Pod must be unique; a validation error is thrown for any container sharing a name with another.
Given the ordering and execution for init containers, the following rules for resource usage apply:
Quota and limits are applied based on the effective Pod request and limit.
Pod level control groups (cgroups) are based on the effective Pod request and limit, the same as the scheduler.
A Pod can restart, causing re-execution of init containers, for the following reasons:
restartPolicy
is set to Always, forcing a restart, and the init container completion record has been lost due to garbage collection.The Pod will not be restarted when the init container image is changed, or the init container completion record has been lost due to garbage collection. This applies for Kubernetes v1.20 and later. If you are using an earlier version of Kubernetes, consult the documentation for the version you are using.
© 2022 The Kubernetes Authors
Documentation Distributed under CC BY 4.0.
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/