Kubernetes reserves all labels and annotations in the kubernetes.io namespace.
This document serves both as a reference to the values and as a coordination point for assigning values.
Example: kubernetes.io/arch=amd64
Used on: Node
The Kubelet populates this with runtime.GOARCH
as defined by Go. This can be handy if you are mixing arm and x86 nodes.
Example: kubernetes.io/os=linux
Used on: Node
The Kubelet populates this with runtime.GOOS
as defined by Go. This can be handy if you are mixing operating systems in your cluster (for example: mixing Linux and Windows nodes).
Example: kubernetes.io/metadata.name=mynamespace
Used on: Namespaces
The Kubernetes API server (part of the control plane) sets this label on all namespaces. The label value is set to the name of the namespace. You can't change this label's value.
This is useful if you want to target a specific namespace with a label selector.
This label has been deprecated. Please use kubernetes.io/arch
instead.
This label has been deprecated. Please use kubernetes.io/os
instead.
Example: kubernetes.io/hostname=ip-172-20-114-199.ec2.internal
Used on: Node
The Kubelet populates this label with the hostname. Note that the hostname can be changed from the "actual" hostname by passing the --hostname-override
flag to the kubelet
.
This label is also used as part of the topology hierarchy. See topology.kubernetes.io/zone for more information.
Example: kubernetes.io/change-cause=kubectl edit --record deployment foo
Used on: All Objects
This annotation is a best guess at why something was changed.
It is populated when adding --record
to a kubectl
command that may change an object.
Example: controller.kubernetes.io/pod-deletion-cost=10
Used on: Pod
This annotation is used to set Pod Deletion Cost which allows users to influence ReplicaSet downscaling order. The annotation parses into an int32
type.
Example: node.kubernetes.io/instance-type=m3.medium
Used on: Node
The Kubelet populates this with the instance type as defined by the cloudprovider
. This will be set only if you are using a cloudprovider
. This setting is handy if you want to target certain workloads to certain instance types, but typically you want to rely on the Kubernetes scheduler to perform resource-based scheduling. You should aim to schedule based on properties rather than on instance types (for example: require a GPU, instead of requiring a g2.2xlarge
).
See topology.kubernetes.io/region.
See topology.kubernetes.io/zone.
Example:
statefulset.kubernetes.io/pod-name=mystatefulset-7
When a StatefulSet controller creates a Pod for the StatefulSet, the control plane sets this label on that Pod. The value of the label is the name of the Pod being created.
See Pod Name Label in the StatefulSet topic for more details.
Example:
topology.kubernetes.io/region=us-east-1
See topology.kubernetes.io/zone.
Example:
topology.kubernetes.io/zone=us-east-1c
Used on: Node, PersistentVolume
On Node: The kubelet
or the external cloud-controller-manager
populates this with the information as provided by the cloudprovider
. This will be set only if you are using a cloudprovider
. However, you should consider setting this on nodes if it makes sense in your topology.
On PersistentVolume: topology-aware volume provisioners will automatically set node affinity constraints on PersistentVolumes
.
A zone represents a logical failure domain. It is common for Kubernetes clusters to span multiple zones for increased availability. While the exact definition of a zone is left to infrastructure implementations, common properties of a zone include very low network latency within a zone, no-cost network traffic within a zone, and failure independence from other zones. For example, nodes within a zone might share a network switch, but nodes in different zones should not.
A region represents a larger domain, made up of one or more zones. It is uncommon for Kubernetes clusters to span multiple regions, While the exact definition of a zone or region is left to infrastructure implementations, common properties of a region include higher network latency between them than within them, non-zero cost for network traffic between them, and failure independence from other zones or regions. For example, nodes within a region might share power infrastructure (e.g. a UPS or generator), but nodes in different regions typically would not.
Kubernetes makes a few assumptions about the structure of zones and regions:
It should be safe to assume that topology labels do not change. Even though labels are strictly mutable, consumers of them can assume that a given node is not going to be moved between zones without being destroyed and recreated.
Kubernetes can use this information in various ways. For example, the scheduler automatically tries to spread the Pods in a ReplicaSet across nodes in a single-zone cluster (to reduce the impact of node failures, see kubernetes.io/hostname). With multiple-zone clusters, this spreading behavior also applies to zones (to reduce the impact of zone failures). This is achieved via SelectorSpreadPriority.
SelectorSpreadPriority is a best effort placement. If the zones in your cluster are heterogeneous (for example: different numbers of nodes, different types of nodes, or different pod resource requirements), this placement might prevent equal spreading of your Pods across zones. If desired, you can use homogenous zones (same number and types of nodes) to reduce the probability of unequal spreading.
The scheduler (through the VolumeZonePredicate predicate) also will ensure that Pods, that claim a given volume, are only placed into the same zone as that volume. Volumes cannot be attached across zones.
If PersistentVolumeLabel
does not support automatic labeling of your PersistentVolumes, you should consider adding the labels manually (or adding support for PersistentVolumeLabel
). With PersistentVolumeLabel
, the scheduler prevents Pods from mounting volumes in a different zone. If your infrastructure doesn't have this constraint, you don't need to add the zone labels to the volumes at all.
Example: node.kubernetes.io/windows-build=10.0.17763
Used on: Node
When the kubelet is running on Microsoft Windows, it automatically labels its node to record the version of Windows Server in use.
The label's value is in the format "MajorVersion.MinorVersion.BuildNumber".
Example: service.kubernetes.io/headless=""
Used on: Service
The control plane adds this label to an Endpoints object when the owning Service is headless.
Example: kubernetes.io/service-name="nginx"
Used on: Service
Kubernetes uses this label to differentiate multiple Services. Used currently for ELB
(Elastic Load Balancer) only.
Example: endpointslice.kubernetes.io/managed-by="controller"
Used on: EndpointSlices
The label is used to indicate the controller or entity that manages an EndpointSlice. This label aims to enable different EndpointSlice objects to be managed by different controllers or entities within the same cluster.
Example: endpointslice.kubernetes.io/skip-mirror="true"
Used on: Endpoints
The label can be set to "true"
on an Endpoints resource to indicate that the EndpointSliceMirroring controller should not mirror this resource with EndpointSlices.
Example: service.kubernetes.io/service-proxy-name="foo-bar"
Used on: Service
The kube-proxy has this label for custom proxy, which delegates service control to custom proxy.
Example: experimental.windows.kubernetes.io/isolation-type: "hyperv"
Used on: Pod
The annotation is used to run Windows containers with Hyper-V isolation. To use Hyper-V isolation feature and create a Hyper-V isolated container, the kubelet should be started with feature gates HyperVContainer=true and the Pod should include the annotation experimental.windows.kubernetes.io/isolation-type=hyperv.
Example: ingressclass.kubernetes.io/is-default-class: "true"
Used on: IngressClass
When a single IngressClass resource has this annotation set to "true"
, new Ingress resource without a class specified will be assigned this default class.
spec.ingressClassName
. Example: storageclass.kubernetes.io/is-default-class=true
Used on: StorageClass
When a single StorageClass resource has this annotation set to "true"
, new PersistentVolumeClaim resource without a class specified will be assigned this default class.
Example: alpha.kubernetes.io/provided-node-ip: "10.0.0.1"
Used on: Node
The kubelet can set this annotation on a Node to denote its configured IPv4 address.
When kubelet is started with the "external" cloud provider, it sets this annotation on the Node to denote an IP address set from the command line flag (--node-ip
). This IP is verified with the cloud provider as valid by the cloud-controller-manager.
Example: batch.kubernetes.io/job-completion-index: "3"
Used on: Pod
The Job controller in the kube-controller-manager sets this annotation for Pods created with Indexed completion mode.
Example: kubectl.kubernetes.io/default-container: "front-end-app"
The value of the annotation is the container name that is default for this Pod. For example, kubectl logs
or kubectl exec
without -c
or --container
flag will use this default container.
Example: endpoints.kubernetes.io/over-capacity:truncated
Used on: Endpoints
In Kubernetes clusters v1.22 (or later), the Endpoints controller adds this annotation to an Endpoints resource if it has more than 1000 endpoints. The annotation indicates that the Endpoints resource is over capacity and the number of endpoints has been truncated to 1000.
Example: batch.kubernetes.io/job-tracking: ""
Used on: Jobs
The presence of this annotation on a Job indicates that the control plane is tracking the Job status using finalizers. You should not manually add or remove this annotation.
Used on: Nodes
This annotation requires the NodePreferAvoidPods scheduling plugin to be enabled. The plugin is deprecated since Kubernetes 1.22. Use Taints and Tolerations instead.
The taints listed below are always used on Nodes
Example: node.kubernetes.io/not-ready:NoExecute
The node controller detects whether a node is ready by monitoring its health and adds or removes this taint accordingly.
Example: node.kubernetes.io/unreachable:NoExecute
The node controller adds the taint to a node corresponding to the NodeCondition Ready
being Unknown
.
Example: node.kubernetes.io/unschedulable:NoSchedule
The taint will be added to a node when initializing the node to avoid race condition.
Example: node.kubernetes.io/memory-pressure:NoSchedule
The kubelet detects memory pressure based on memory.available
and allocatableMemory.available
observed on a Node. The observed values are then compared to the corresponding thresholds that can be set on the kubelet to determine if the Node condition and taint should be added/removed.
Example: node.kubernetes.io/disk-pressure:NoSchedule
The kubelet detects disk pressure based on imagefs.available
, imagefs.inodesFree
, nodefs.available
and nodefs.inodesFree
(Linux only) observed on a Node. The observed values are then compared to the corresponding thresholds that can be set on the kubelet to determine if the Node condition and taint should be added/removed.
Example: node.kubernetes.io/network-unavailable:NoSchedule
This is initially set by the kubelet when the cloud provider used indicates a requirement for additional network configuration. Only when the route on the cloud is configured properly will the taint be removed by the cloud provider.
Example: node.kubernetes.io/pid-pressure:NoSchedule
The kubelet checks D-value of the size of /proc/sys/kernel/pid_max
and the PIDs consumed by Kubernetes on a node to get the number of available PIDs that referred to as the pid.available
metric. The metric is then compared to the corresponding threshold that can be set on the kubelet to determine if the node condition and taint should be added/removed.
Example: node.cloudprovider.kubernetes.io/uninitialized:NoSchedule
Sets this taint on a node to mark it as unusable, when kubelet is started with the "external" cloud provider, until a controller from the cloud-controller-manager initializes this node, and then removes the taint.
Example: node.cloudprovider.kubernetes.io/shutdown:NoSchedule
If a Node is in a cloud provider specified shutdown state, the Node gets tainted accordingly with node.cloudprovider.kubernetes.io/shutdown
and the taint effect of NoSchedule
.
Example: pod-security.kubernetes.io/enforce: baseline
Used on: Namespace
Value must be one of privileged
, baseline
, or restricted
which correspond to Pod Security Standard levels. Specifically, the enforce
label prohibits the creation of any Pod in the labeled Namespace which does not meet the requirements outlined in the indicated level.
See Enforcing Pod Security at the Namespace Level for more information.
Example: pod-security.kubernetes.io/enforce-version: 1.23
Used on: Namespace
Value must be latest
or a valid Kubernetes version in the format v<MAJOR>.<MINOR>
. This determines the version of the Pod Security Standard policies to apply when validating a submitted Pod.
See Enforcing Pod Security at the Namespace Level for more information.
Example: pod-security.kubernetes.io/audit: baseline
Used on: Namespace
Value must be one of privileged
, baseline
, or restricted
which correspond to Pod Security Standard levels. Specifically, the audit
label does not prevent the creation of a Pod in the labeled Namespace which does not meet the requirements outlined in the indicated level, but adds an audit annotation to that Pod.
See Enforcing Pod Security at the Namespace Level for more information.
Example: pod-security.kubernetes.io/audit-version: 1.23
Used on: Namespace
Value must be latest
or a valid Kubernetes version in the format v<MAJOR>.<MINOR>
. This determines the version of the Pod Security Standard policies to apply when validating a submitted Pod.
See Enforcing Pod Security at the Namespace Level for more information.
Example: pod-security.kubernetes.io/warn: baseline
Used on: Namespace
Value must be one of privileged
, baseline
, or restricted
which correspond to Pod Security Standard levels. Specifically, the warn
label does not prevent the creation of a Pod in the labeled Namespace which does not meet the requirements outlined in the indicated level, but returns a warning to the user after doing so. Note that warnings are also displayed when creating or updating objects that contain Pod templates, such as Deployments, Jobs, StatefulSets, etc.
See Enforcing Pod Security at the Namespace Level for more information.
Example: pod-security.kubernetes.io/warn-version: 1.23
Used on: Namespace
Value must be latest
or a valid Kubernetes version in the format v<MAJOR>.<MINOR>
. This determines the version of the Pod Security Standard policies to apply when validating a submitted Pod. Note that warnings are also displayed when creating or updating objects that contain Pod templates, such as Deployments, Jobs, StatefulSets, etc.
See Enforcing Pod Security at the Namespace Level for more information.
This annotation has been deprecated since Kubernetes v1.19 and will become non-functional in v1.25. To specify security settings for a Pod, include the securityContext
field in the Pod specification. The securityContext
field within a Pod's .spec
defines pod-level security attributes. When you specify the security context for a Pod, the settings you specify apply to all containers in that Pod.
This annotation has been deprecated since Kubernetes v1.19 and will become non-functional in v1.25. The tutorial Restrict a Container's Syscalls with seccomp takes you through the steps you follow to apply a seccomp profile to a Pod or to one of its containers. That tutorial covers the supported mechanism for configuring seccomp in Kubernetes, based on setting securityContext
within the Pod's .spec
.
© 2022 The Kubernetes Authors
Documentation Distributed under CC BY 4.0.
https://kubernetes.io/docs/reference/labels-annotations-taints/