class matplotlib.scale.FuncScale(axis, functions)
[source]
Bases: matplotlib.scale.ScaleBase
Provide an arbitrary scale with user-supplied function for the axis.
Parameters: |
|
---|
get_transform(self)
[source]
The transform for arbitrary scaling
name = 'function'
set_default_locators_and_formatters(self, axis)
[source]
Set the locators and formatters to the same defaults as the linear scale.
class matplotlib.scale.FuncScaleLog(axis, functions, base=10)
[source]
Bases: matplotlib.scale.LogScale
Provide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes.
Parameters: |
|
---|
base
get_transform(self)
[source]
The transform for arbitrary scaling
name = 'functionlog'
class matplotlib.scale.FuncTransform(forward, inverse)
[source]
Bases: matplotlib.transforms.Transform
A simple transform that takes and arbitrary function for the forward and inverse transform.
Parameters: |
|
---|
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, values)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.InvertedLog10Transform(**kwargs)
[source]
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 10.0
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedLog2Transform(**kwargs)
[source]
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.0
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedLogTransform(base)
[source]
Bases: matplotlib.scale.InvertedLogTransformBase
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.InvertedLogTransformBase(**kwargs)
[source]
Bases: matplotlib.transforms.Transform
[Deprecated]
Deprecated since version 3.1:
has_inverse = True
input_dims = 1
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.InvertedNaturalLogTransform(**kwargs)
[source]
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.718281828459045
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)
[source]
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.LinearScale(axis, **kwargs)
[source]
Bases: matplotlib.scale.ScaleBase
The default linear scale.
get_transform(self)
[source]
The transform for linear scaling is just the IdentityTransform
.
name = 'linear'
set_default_locators_and_formatters(self, axis)
[source]
Set the locators and formatters to reasonable defaults for linear scaling.
class matplotlib.scale.Log10Transform(**kwargs)
[source]
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 10.0
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.Log2Transform(**kwargs)
[source]
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.0
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.LogScale(axis, **kwargs)
[source]
Bases: matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken to only plot positive values.
Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
class InvertedLog10Transform(**kwargs)
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 10.0
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class InvertedLog2Transform(**kwargs)
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.0
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class InvertedLogTransform(base)
Bases: matplotlib.scale.InvertedLogTransformBase
has_inverse = True
input_dims = 1
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class InvertedNaturalLogTransform(**kwargs)
Bases: matplotlib.scale.InvertedLogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.718281828459045
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class Log10Transform(**kwargs)
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 10.0
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class Log2Transform(**kwargs)
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.0
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class LogTransform(base, nonpos='clip')
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class LogTransformBase(**kwargs)
Bases: matplotlib.transforms.Transform
[Deprecated]
Deprecated since version 3.1:
has_inverse = True
input_dims = 1
is_separable = True
output_dims = 1
transform_non_affine(self, a)
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class NaturalLogTransform(**kwargs)
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.718281828459045
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
base
limit_range_for_scale(self, vmin, vmax, minpos)
[source]
Limit the domain to positive values.
name = 'log'
set_default_locators_and_formatters(self, axis)
[source]
Set the locators and formatters to specialized versions for log scaling.
class matplotlib.scale.LogTransform(base, nonpos='clip')
[source]
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.LogTransformBase(**kwargs)
[source]
Bases: matplotlib.transforms.Transform
[Deprecated]
Deprecated since version 3.1:
has_inverse = True
input_dims = 1
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class matplotlib.scale.LogisticTransform(nonpos='mask')
[source]
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
logistic transform (base 10)
class matplotlib.scale.LogitScale(axis, nonpos='mask')
[source]
Bases: matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
get_transform(self)
[source]
Return a LogitTransform
instance.
limit_range_for_scale(self, vmin, vmax, minpos)
[source]
Limit the domain to values between 0 and 1 (excluded).
name = 'logit'
class matplotlib.scale.LogitTransform(nonpos='mask')
[source]
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
logit transform (base 10), masked or clipped
class matplotlib.scale.NaturalLogTransform(**kwargs)
[source]
Bases: matplotlib.scale.LogTransformBase
[Deprecated]
Deprecated since version 3.1:
base = 2.718281828459045
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.ScaleBase(axis, **kwargs)
[source]
Bases: object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
Construct a new scale.
The following note is for scale implementors.
For back-compatibility reasons, scales take an Axis
object as first argument. However, this argument should not be used: a single scale object should be usable by multiple Axis
es at the same time.
limit_range_for_scale(self, vmin, vmax, minpos)
[source]
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.
class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
[source]
Bases: matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Parameters: |
|
---|
class InvertedSymmetricalLogTransform(base, linthresh, linscale)
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
class SymmetricalLogTransform(base, linthresh, linscale)
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
get_transform(self)
[source]
Return a SymmetricalLogTransform
instance.
name = 'symlog'
set_default_locators_and_formatters(self, axis)
[source]
Set the locators and formatters to specialized versions for symmetrical log scaling.
class matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)
[source]
Bases: matplotlib.transforms.Transform
has_inverse = True
input_dims = 1
inverted(self)
[source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True
output_dims = 1
transform_non_affine(self, a)
[source]
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent to transform_affine(transform_non_affine(values))
.
In non-affine transformations, this is generally equivalent to transform(values)
. In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims
) and returns a numpy array of shape (N x output_dims
).
Alternatively, accepts a numpy array of length input_dims
and returns a numpy array of length output_dims
.
matplotlib.scale.get_scale_docs()
[source]
[Deprecated] Helper function for generating docstrings related to scales.
Deprecated since version 3.1: get_scale_docs() is considered private API since 3.1 and will be removed from the public API in 3.3.
matplotlib.scale.get_scale_names()
[source]
matplotlib.scale.register_scale(scale_class)
[source]
Register a new kind of scale.
scale_class must be a subclass of ScaleBase
.
matplotlib.scale.scale_factory(scale, axis, **kwargs)
[source]
Return a scale class by name.
Parameters: |
|
---|
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.1.1/api/scale_api.html