numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs) [source]
Apply a function to 1-D slices along the given axis.
Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.
This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk to a tuple of indices:
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
    for kk in ndindex(Nk):
        f = func1d(arr[ii + s_[:,] + kk])
        Nj = f.shape
        for jj in ndindex(Nj):
            out[ii + jj + kk] = f[jj]
 Equivalently, eliminating the inner loop, this can be expressed as:
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
    for kk in ndindex(Nk):
        out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
 | Parameters: | 
 | 
|---|---|
| Returns: | 
 | 
See also
apply_over_axes
>>> def my_func(a): ... """Average first and last element of a 1-D array""" ... return (a[0] + a[-1]) * 0.5 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(my_func, 0, b) array([4., 5., 6.]) >>> np.apply_along_axis(my_func, 1, b) array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
       [3, 4, 9],
       [2, 5, 6]])
 For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimension.
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],
        [0, 2, 0],
        [0, 0, 3]],
       [[4, 0, 0],
        [0, 5, 0],
        [0, 0, 6]],
       [[7, 0, 0],
        [0, 8, 0],
        [0, 0, 9]]])
 
    © 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
    https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.apply_along_axis.html