numpy.compress(condition, a, axis=None, out=None) [source]
Return selected slices of an array along given axis.
When working along a given axis, a slice along that axis is returned in output for each index where condition evaluates to True. When working on a 1-D array, compress is equivalent to extract.
| Parameters: |
|
|---|---|
| Returns: |
|
See also
take, choose, diag, diagonal, select
ndarray.compress
np.extract numpy.doc.ufuncs >>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],
[5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],
[4],
[6]])
Working on the flattened array does not return slices along an axis but selects elements.
>>> np.compress([False, True], a) array([2])
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.compress.html