numpy.dstack(tup)
[source]
Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N)
have been reshaped to (M,N,1)
and 1-D arrays of shape (N,)
have been reshaped to (1,N,1)
. Rebuilds arrays divided by dsplit
.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate
, stack
and block
provide more general stacking and concatenation operations.
Parameters: |
|
---|---|
Returns: |
|
See also
stack
vstack
hstack
concatenate
dsplit
>>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]])
>>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.dstack((a,b)) array([[[1, 2]], [[2, 3]], [[3, 4]]])
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.dstack.html