numpy.fft.ifft(a, n=None, axis=1, norm=None)
[source]
Compute the onedimensional inverse discrete Fourier Transform.
This function computes the inverse of the onedimensional npoint discrete Fourier transform computed by fft
. In other words, ifft(fft(a)) == a
to within numerical accuracy. For a general description of the algorithm and definitions, see numpy.fft
.
The input should be ordered in the same way as is returned by fft
, i.e.,
a[0]
should contain the zero frequency term,a[1:n//2]
should contain the positivefrequency terms,a[n//2 + 1:]
should contain the negativefrequency terms, in increasing order starting from the most negative frequency.For an even number of input points, A[n//2]
represents the sum of the values at the positive and negative Nyquist frequencies, as the two are aliased together. See numpy.fft
for details.
Parameters: 


Returns: 

Raises: 

See also
If the input parameter n
is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling ifft
.
>>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, 1.+0.j, 0.1.j]) # may vary
Create and plot a bandlimited signal with random phases:
>>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b', t, s.imag, 'r') [<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at ...> >>> plt.show()
© 2005–2019 NumPy Developers
Licensed under the 3clause BSD License.
https://docs.scipy.org/doc/numpy1.17.0/reference/generated/numpy.fft.ifft.html