W3cubDocs

/NumPy 1.17

numpy.ma.compress_rowcols

numpy.ma.compress_rowcols(x, axis=None) [source]

Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.

  • If axis is None, both rows and columns are suppressed.
  • If axis is 0, only rows are suppressed.
  • If axis is 1 or -1, only columns are suppressed.
Parameters:
x : array_like, MaskedArray

The array to operate on. If not a MaskedArray instance (or if no array elements are masked), x is interpreted as a MaskedArray with mask set to nomask. Must be a 2D array.

axis : int, optional

Axis along which to perform the operation. Default is None.

Returns:
compressed_array : ndarray

The compressed array.

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
...                                                   [1, 0, 0],
...                                                   [0, 0, 0]])
>>> x
masked_array(
  data=[[--, 1, 2],
        [--, 4, 5],
        [6, 7, 8]],
  mask=[[ True, False, False],
        [ True, False, False],
        [False, False, False]],
  fill_value=999999)
>>> np.ma.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.compress_rowcols(x, 1)
array([[1, 2],
       [4, 5],
       [7, 8]])

© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.compress_rowcols.html