numpy.ma.innerproduct(a, b) [source]
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.
| Parameters: |
|
|---|---|
| Returns: |
|
| Raises: |
|
See also
tensordot dot
b.einsum Masked values are replaced by 0.
For vectors (1-D arrays) it computes the ordinary inner-product:
np.inner(a, b) = sum(a[:]*b[:])
More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:
np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
or explicitly:
np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
In addition a or b may be scalars, in which case:
np.inner(a,b) = a*b
Ordinary inner product for vectors:
>>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2
A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],
[ 86, 110, 134]])
An example where b is a scalar:
>>> np.inner(np.eye(2), 7)
array([[7., 0.],
[0., 7.]])
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.innerproduct.html