numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True) [source]
Mask using floating point equality.
Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose.
For integer types, exact equality is used, in the same way as masked_equal.
The fill_value is set to value and the mask is set to nomask if possible.
| Parameters: |
|
|---|---|
| Returns: |
|
See also
masked_where
masked_equal
>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data=[1.0, --, 2.0, --, 3.0],
mask=[False, True, False, True, False],
fill_value=1.1)
Note that mask is set to nomask if possible.
>>> ma.masked_values(x, 1.5)
masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
mask=False,
fill_value=1.5)
For integers, the fill value will be different in general to the result of masked_equal.
>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data=[0, 1, --, 3, 4],
mask=[False, False, True, False, False],
fill_value=2)
>>> ma.masked_equal(x, 2)
masked_array(data=[0, 1, --, 3, 4],
mask=[False, False, True, False, False],
fill_value=2)
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.masked_values.html