numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
[source]
Mask using floating point equality.
Return a MaskedArray, masked where the data in array x
are approximately equal to value
, determined using isclose
. The default tolerances for masked_values
are the same as those for isclose
.
For integer types, exact equality is used, in the same way as masked_equal
.
The fill_value is set to value
and the mask is set to nomask
if possible.
Parameters: |
|
---|---|
Returns: |
|
See also
masked_where
masked_equal
>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1)
Note that mask
is set to nomask
if possible.
>>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5)
For integers, the fill value will be different in general to the result of masked_equal
.
>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2)
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.masked_values.html