numpy.polynomial.chebyshev.chebvander(x, deg) [source]
Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by
where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the Chebyshev polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then np.dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample points.
| Parameters: |
|
|---|---|
| Returns: |
|
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.polynomial.chebyshev.chebvander.html