numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)
[source]
Differentiate a Hermite_e series.
Returns the series coefficients c
differentiated m
times along axis
. At each iteration the result is multiplied by scl
(the scaling factor is for use in a linear change of variable). The argument c
is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*He_0 + 2*He_1 + 3*He_2
while [[1,2],[1,2]] represents 1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y)
+ 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)
if axis=0 is x
and axis=1 is y
.
Parameters: 


Returns: 

See also
In general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.
>>> from numpy.polynomial.hermite_e import hermeder >>> hermeder([ 1., 1., 1., 1.]) array([1., 2., 3.]) >>> hermeder([0.25, 1., 1./2., 1./3., 1./4 ], m=2) array([1., 2., 3.])
© 2005–2019 NumPy Developers
Licensed under the 3clause BSD License.
https://docs.scipy.org/doc/numpy1.17.0/reference/generated/numpy.polynomial.hermite_e.hermeder.html