numpy.polynomial.hermite_e.hermeval(x, c, tensor=True)
[source]
Evaluate an HermiteE series at points x.
If c
is of length n + 1
, this function returns the value:
The parameter x
is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with themselves and with the elements of c
.
If c
is a 1D array, then p(x)
will have the same shape as x
. If c
is multidimensional, then the shape of the result depends on the value of tensor
. If tensor
is true the shape will be c.shape[1:] + x.shape. If tensor
is false the shape will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.
Parameters: 


Returns: 

See also
The evaluation uses Clenshaw recursion, aka synthetic division.
>>> from numpy.polynomial.hermite_e import hermeval >>> coef = [1,2,3] >>> hermeval(1, coef) 3.0 >>> hermeval([[1,2],[3,4]], coef) array([[ 3., 14.], [31., 54.]])
© 2005–2019 NumPy Developers
Licensed under the 3clause BSD License.
https://docs.scipy.org/doc/numpy1.17.0/reference/generated/numpy.polynomial.hermite_e.hermeval.html