numpy.testing.assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True) [source]
Raises an AssertionError if two items are not equal up to desired precision.
Note
It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or assert_array_max_ulp instead of this function for more consistent floating point comparisons.
The test verifies that the elements of actual and desired satisfy.
abs(desired-actual) < 1.5 * 10**(-decimal) That is a looser test than originally documented, but agrees with what the actual implementation in assert_array_almost_equal did up to rounding vagaries. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal
| Parameters: |
|
|---|---|
| Raises: |
|
See also
assert_allclose
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
Traceback (most recent call last):
...
AssertionError:
Arrays are not almost equal to 10 decimals
ACTUAL: 2.3333333333333
DESIRED: 2.33333334
>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
Traceback (most recent call last):
...
AssertionError:
Arrays are not almost equal to 9 decimals
Mismatch: 50%
Max absolute difference: 6.66669964e-09
Max relative difference: 2.85715698e-09
x: array([1. , 2.333333333])
y: array([1. , 2.33333334])
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.testing.assert_almost_equal.html