method
ufunc.reduceat(a, indices, axis=0, dtype=None, out=None) Performs a (local) reduce with specified slices over a single axis.
For i in range(len(indices)), reduceat computes ufunc.reduce(a[indices[i]:indices[i+1]]), which becomes the i-th generalized “row” parallel to axis in the final result (i.e., in a 2-D array, for example, if axis = 0, it becomes the i-th row, but if axis = 1, it becomes the i-th column). There are three exceptions to this:
i = len(indices) - 1 (so for the last index), indices[i+1] = a.shape[axis].indices[i] >= indices[i + 1], the i-th generalized “row” is simply a[indices[i]].indices[i] >= len(a) or indices[i] < 0, an error is raised.The shape of the output depends on the size of indices, and may be larger than a (this happens if len(indices) > a.shape[axis]).
| Parameters: |
|
|---|---|
| Returns: |
|
A descriptive example:
If a is 1-D, the function ufunc.accumulate(a) is the same as ufunc.reduceat(a, indices)[::2] where indices is range(len(array) - 1) with a zero placed in every other element: indices = zeros(2 * len(a) - 1), indices[1::2] = range(1, len(a)).
Don’t be fooled by this attribute’s name: reduceat(a) is not necessarily smaller than a.
To take the running sum of four successive values:
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] array([ 6, 10, 14, 18])
A 2-D example:
>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
# reduce such that the result has the following five rows: # [row1 + row2 + row3] # [row4] # [row2] # [row3] # [row1 + row2 + row3 + row4]
>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[12., 15., 18., 21.],
[12., 13., 14., 15.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[24., 28., 32., 36.]])
# reduce such that result has the following two columns: # [col1 * col2 * col3, col4]
>>> np.multiply.reduceat(x, [0, 3], 1)
array([[ 0., 3.],
[ 120., 7.],
[ 720., 11.],
[2184., 15.]])
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ufunc.reduceat.html