module Set: sig .. end
Sets over ordered types.
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
The Set.Make
functor constructs implementations for any type, given a compare
function. For instance:
module IntPairs = struct type t = int * int let compare (x0,y0) (x1,y1) = match Stdlib.compare x0 x1 with 0 -> Stdlib.compare y0 y1 | c -> c end module PairsSet = Set.Make(IntPairs) let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
This creates a new module PairsSet
, with a new type PairsSet.t
of sets of int * int
.
module type OrderedType = sig .. end
Input signature of the functor Set.Make
.
module type S = sig .. end
Output signature of the functor Set.Make
.
module Make: functor (Ord : OrderedType) -> S with type elt = Ord.t
Functor building an implementation of the set structure given a totally ordered type.
© INRIA 1995-2020.
https://www.ocaml.org/releases/4.11/htmlman/libref/Set.html