module Set: sig .. end
Sets over ordered types.
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
The Set.Make functor constructs implementations for any type, given a compare function. For instance:
     module IntPairs =
       struct
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match Stdlib.compare x0 x1 with
               0 -> Stdlib.compare y0 y1
             | c -> c
       end
     module PairsSet = Set.Make(IntPairs)
     let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
    This creates a new module PairsSet, with a new type PairsSet.t of sets of int * int.
module type OrderedType = sig .. end
Input signature of the functor Set.Make.
module type S = sig .. end
Output signature of the functor Set.Make.
module Make: functor (Ord : OrderedType) -> S with type elt = Ord.t
Functor building an implementation of the set structure given a totally ordered type.
    © INRIA 1995-2020.
    https://www.ocaml.org/releases/4.11/htmlman/libref/Set.html