/pandas 0.23

Working with missing data

In this section, we will discuss missing (also referred to as NA) values in pandas.


The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the cookbook for some advanced strategies.

Missing data basics

When / why does data become missing?

Some might quibble over our usage of missing. By “missing” we simply mean NA (“not available”) or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example:

In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
   ...:                   columns=['one', 'two', 'three'])

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
        one       two     three four   five
a -0.166778  0.501113 -0.355322  bar  False
c -0.337890  0.580967  0.983801  bar  False
e  0.057802  0.761948 -0.712964  bar   True
f -0.443160 -0.974602  1.047704  bar  False
h -0.717852 -1.053898 -0.019369  bar  False

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
        one       two     three four   five
a -0.166778  0.501113 -0.355322  bar  False
b       NaN       NaN       NaN  NaN    NaN
c -0.337890  0.580967  0.983801  bar  False
d       NaN       NaN       NaN  NaN    NaN
e  0.057802  0.761948 -0.712964  bar   True
f -0.443160 -0.974602  1.047704  bar  False
g       NaN       NaN       NaN  NaN    NaN
h -0.717852 -1.053898 -0.019369  bar  False

Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that “missing” or “not available” or “NA”.


If you want to consider inf and -inf to be “NA” in computations, you can set pandas.options.mode.use_inf_as_na = True.

To make detecting missing values easier (and across different array dtypes), pandas provides the isna() and notna() functions, which are also methods on Series and DataFrame objects:

In [7]: df2['one']
a   -0.166778
b         NaN
c   -0.337890
d         NaN
e    0.057802
f   -0.443160
g         NaN
h   -0.717852
Name: one, dtype: float64

In [8]: pd.isna(df2['one'])

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.