class pandas.Categorical(values, categories=None, ordered=None, dtype=None, fastpath=False) [source]
Represent a categorical variable in classic R / S-plus fashion.
Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions, divisions, …) are not possible.
All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise a ValueError. Order is defined by the order of the categories, not lexical order of the values.
| Parameters: |
|
|---|---|
| Raises: |
|
See also
api.types.CategoricalDtype CategoricalIndex
Categorical.See the user guide for more.
>>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]
>>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c]
Ordered Categoricals can be sorted according to the custom order of the categories and can have a min and max value.
>>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c'
categories | The categories of this categorical. |
codes | The category codes of this categorical. |
ordered | Whether the categories have an ordered relationship. |
dtype | The CategoricalDtype for this instance |
from_codes(codes[, categories, ordered, dtype]) | Make a Categorical type from codes and categories or dtype. |
__array__(self[, dtype]) | The numpy array interface. |
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Categorical.html