CategoricalIndex.map(self, mapper)
[source]
Map values using input correspondence (a dict, Series, or function).
Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a CategoricalIndex
which has the same order property as the original, otherwise an Index
is returned.
If a dict
or Series
is used any unmapped category is mapped to NaN
. Note that if this happens an Index
will be returned.
Parameters: |
|
---|---|
Returns: |
|
See also
Index.map
Index
.Series.map
Series
.Series.apply
Series
.>>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category')
If the mapping is one-to-one the ordering of the categories is preserved:
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category')
If the mapping is not one-to-one an Index
is returned:
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object')
If a dict
is used, all unmapped categories are mapped to NaN
and the result is an Index
:
>>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object')
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.CategoricalIndex.map.html