W3cubDocs

/pandas 0.25

pandas.DataFrame.assign

DataFrame.assign(self, **kwargs) [source]

Assign new columns to a DataFrame.

Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.

Parameters:
**kwargs : dict of {str: callable or Series}

The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.

Returns:
DataFrame

A new DataFrame with the new columns in addition to all the existing columns.

Notes

Assigning multiple columns within the same assign is possible. For Python 3.6 and above, later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical order.

Changed in version 0.23.0: Keyword argument order is maintained for Python 3.6 and later.

Examples

>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
...                   index=['Portland', 'Berkeley'])
>>> df
          temp_c
Portland    17.0
Berkeley    25.0

Where the value is a callable, evaluated on df:

>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
          temp_c  temp_f
Portland    17.0    62.6
Berkeley    25.0    77.0

Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence:

>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
          temp_c  temp_f
Portland    17.0    62.6
Berkeley    25.0    77.0

In Python 3.6+, you can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign:

>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
...           temp_k=lambda x: (x['temp_f'] +  459.67) * 5 / 9)
          temp_c  temp_f  temp_k
Portland    17.0    62.6  290.15
Berkeley    25.0    77.0  298.15

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.DataFrame.assign.html