pandas.DataFrame.to_gbq
-
DataFrame.to_gbq(self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists='fail', auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, verbose=None, private_key=None)
[source]
-
Write a DataFrame to a Google BigQuery table.
This function requires the pandas-gbq package.
See the How to authenticate with Google BigQuery guide for authentication instructions.
Parameters: |
-
destination_table : str -
Name of table to be written, in the form dataset.tablename . -
project_id : str, optional -
Google BigQuery Account project ID. Optional when available from the environment. -
chunksize : int, optional -
Number of rows to be inserted in each chunk from the dataframe. Set to None to load the whole dataframe at once. -
reauth : bool, default False -
Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. -
if_exists : str, default ‘fail’ -
Behavior when the destination table exists. Value can be one of: -
'fail' -
If table exists, do nothing. -
'replace' -
If table exists, drop it, recreate it, and insert data. -
'append' -
If table exists, insert data. Create if does not exist. -
auth_local_webserver : bool, default False -
Use the local webserver flow instead of the console flow when getting user credentials. New in version 0.2.0 of pandas-gbq. -
table_schema : list of dicts, optional -
List of BigQuery table fields to which according DataFrame columns conform to, e.g. [{'name': 'col1', 'type':
'STRING'},...] . If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. New in version 0.3.1 of pandas-gbq. -
location : str, optional -
Location where the load job should run. See the BigQuery locations documentation for a list of available locations. The location must match that of the target dataset. New in version 0.5.0 of pandas-gbq. -
progress_bar : bool, default True -
Use the library tqdm to show the progress bar for the upload, chunk by chunk. New in version 0.5.0 of pandas-gbq. -
credentials : google.auth.credentials.Credentials, optional -
Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine google.auth.compute_engine.Credentials or Service Account google.oauth2.service_account.Credentials directly. New in version 0.8.0 of pandas-gbq. -
verbose : bool, deprecated -
Deprecated in pandas-gbq version 0.4.0. Use the logging module to adjust verbosity instead. -
private_key : str, deprecated -
Deprecated in pandas-gbq version 0.8.0. Use the credentials parameter and google.oauth2.service_account.Credentials.from_service_account_info() or google.oauth2.service_account.Credentials.from_service_account_file() instead. Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host). |