DataFrame.transpose(self, *args, **kwargs) [source]
Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property T is an accessor to the method transpose().
| Parameters: |
|
|---|---|
| Returns: |
|
See also
numpy.transpose
Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object dtype. In such a case, a copy of the data is always made.
Square DataFrame with homogeneous dtype
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
col1 col2
0 1 3
1 2 4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
0 1
col1 1 2
col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype:
>>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object
Non-square DataFrame with mixed dtypes
>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
0 1
name Alice Bob
score 9.5 8
employed False True
kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:
>>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.DataFrame.transpose.html